18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$則不等式xf(x+1)<x2-2的解集為( 。
A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(-∞,-1)D.(1,+∞)

分析 先求出xf(x+1)的表達式,注意討論x+1>1,x+1≤1,再運用二次不等式的解法,分段解不等式即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{1,x≤1}\\{-1,x>1}\end{array}\right.$,
當(dāng)x+1>1,即x>0時,xf(x+1)<x2-2,即為-x<x2-2,
解得x>1或x<-2,即為x>1;
當(dāng)x+1≤1,即x≤0時,xf(x+1)<x2-2,即為x<x2-2,
解得x>2或x<-1,即為x<-1.
則不等式的解集為(-∞,-1)∪(1,+∞).
故選:B.

點評 考查解分段不等式,題型較靈活,求出函數(shù)的解析式,利用分類討論是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x|x2+x-2>0},B={y|y=log2x},則(∁RA)∩B=( 。
A.(-2,1)B.[-2,1]C.(-∞,-2)∪(1,+∞)D.(-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知橢圓的左、右焦點為F1、F2,若橢圓上存在點P使∠F1PF2=60°,則橢圓的離心率的取值范圍為(  )
A.[$\frac{\sqrt{3}}{2}$,1)B.(0,$\frac{\sqrt{3}}{2}$]C.[$\frac{1}{2}$,1)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(a,b)=$\sqrt{{3}^{2}+(5-a)^{2}}$+$\sqrt{(5-2b)^{2}+(5-b)^{2}}$+$\sqrt{4(b-1)^{2}+(b-a)^{2}}$,其中a,b∈R,則f(a,b)的最小值是4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=logax(a>0,且a≠1),如果對于任意的x∈[$\frac{1}{3}$,2]都有-1≤f(x)≤1成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知二次函數(shù)f(x)=x2-mx+2滿足f($\frac{3}{2}$+x)=f($\frac{3}{2}$-x).
命題p:上列二次函數(shù)f(x)當(dāng)x∈[0,a]時,最大值是2.
命題q:關(guān)于x的不等式x2+(a-1)x+a2<0的解集是∅.
若命題“p∧q”為假,“p∨q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用“五點法”畫出函數(shù)y=cosx-1的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在矩形ABCD中,點M在線段BC上,點N在線段CD上.且AB=4.AD=2,MN=$\sqrt{5}$,則$\overrightarrow{AM}$$•\overrightarrow{AN}$的最小值是( 。
A.8B.10C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.任取x∈[-$\frac{π}{6}$,$\frac{π}{2}$],則使sinx+cosx∈[1,$\sqrt{2}$]的概率是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案