分析 討論焦點的位置,求得a,b,c,再由離心率公式計算即可得到所求m的值.
解答 解:若橢圓的焦點在x軸上,
可得a2=5,b2=5+m,c2=-m,
即有e2=$\frac{-m}{5}$=$\frac{1}{4}$,可得m=-$\frac{5}{4}$;
若橢圓的焦點在y軸上,
可得b2=5,a2=5+m,c2=m,
即有e2=$\frac{m}{5+m}$=$\frac{1}{4}$,可得m=$\frac{5}{3}$.
故答案為:-$\frac{5}{4}$或$\frac{5}{3}$.
點評 本題考查橢圓的性質和應用,考查橢圓的離心率公式,注意討論焦點的位置,考查運算能力,屬于基礎題和易錯題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2cm | B. | 3cm | C. | 2.5cm | D. | 5cm |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com