由不等式組
x≥0
y≥0
x+y-1≤0
表示的平面區(qū)域(圖中陰影部分)為( 。
A.B.C.D.
由不等式組可知,平面區(qū)域位于直線x=0的右側(cè),y=0的上方,
直線x+y-1=0的下方,
故對(duì)應(yīng)的平面區(qū)域?yàn)镈,
故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,不等式組
x+y-2≤0
x-y+2≥0
y≥0
表示的平面區(qū)域的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知變量x,y滿足約束條件
x+y≤2
x-y≤2
x≥1
,若x+2y≥a恒成立,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,-1]B.(-∞,2]C.(-∞,3]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二元一次不等式組
x+y≤1
x≥0
y≥0
表示的平面區(qū)域的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P在△ABC內(nèi)(包括邊界),且
AP
AB
AC
,若對(duì)于滿足條件的λ和μ,都有|aλ+bμ|≤2成立,則動(dòng)點(diǎn)Q(a,b)形成的平面區(qū)域的面積(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某汽車(chē)公司有兩家裝配廠,生產(chǎn)甲、乙兩種不同型號(hào)的汽車(chē),若A廠每小時(shí)可完成1輛甲型車(chē)和2輛乙型車(chē);B廠每小時(shí)可完成3輛甲型車(chē)和1輛乙型車(chē).今欲制造40輛甲型車(chē)和20輛乙型車(chē),問(wèn)這兩家工廠各工作幾小時(shí),才能使所費(fèi)的總工作時(shí)數(shù)最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果實(shí)數(shù)xy滿足不等式組
x-y+1≤0,x≥1
2x-y-2≤0
,則x2+y2的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校在籌備校運(yùn)會(huì)時(shí)欲制作會(huì)徽,準(zhǔn)備向全校學(xué)生征集設(shè)計(jì)方案,某學(xué)生在設(shè)計(jì)中需要相同的三角形紙片7張,四邊形紙片6張,五邊形形紙片9張,而這些紙片必須從A、B兩種規(guī)格的紙中裁取,具體如下:
三角形紙片(張)四邊形紙片(張)五邊形紙片(張)
A型紙(每張可同時(shí)裁。113
B型紙(每張可同時(shí)裁。211
(普通中學(xué)學(xué)生做)若每張A、B型紙的價(jià)格分別為3元與4元,試設(shè)計(jì)一種買(mǎi)紙方案,使該學(xué)生在制作時(shí)買(mǎi)紙的費(fèi)用最省,并求此最省費(fèi)用.
(重點(diǎn)中學(xué)學(xué)生做)若每張A、B型紙的價(jià)格分別為4元與3元,試設(shè)計(jì)一種買(mǎi)紙方案,使該學(xué)生在制作時(shí)買(mǎi)紙的費(fèi)用最省,并求此最省費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)變量x,y滿足約束條件
x+y≥3
x-y≥-1
,則目標(biāo)函數(shù)z=y+2x的最小值為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案