分析 求出雙曲線的漸近線方程,利用漸近線與圓相切,得到a、b關(guān)系,然后求解雙曲線的離心率.
解答 解:由題意可知雙曲線的漸近線方程之一為:bx+ay=0,
圓(x-$\sqrt{2}$)2+y2=1的圓心($\sqrt{2}$,0),半徑為1,
雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓(x-$\sqrt{2}$)2+y2=1相切,
可得:$\frac{\sqrt{2}b}{\sqrt{^{2}+{a}^{2}}}$=1,
可得a2=b2,c=$\sqrt{2}$a,
∴e=$\sqrt{2}$.
故答案為$\sqrt{2}$.
點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,雙曲線的漸近線與圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,6] | B. | [-6,-2] | C. | (2,6) | D. | (-6,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-e2,+∞) | B. | (-e2,0) | C. | (-e-2,+∞) | D. | (-e-2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{4}{3}$,4] | B. | [$\frac{4}{3}$,4) | C. | [2,4] | D. | (2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | -1+i | C. | l-i | D. | -1一i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$ | B. | 若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則k=$\frac{1}{3}$ | ||
C. | |$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$•$\overrightarrow$=0 | D. | 若$\overrightarrow{a}$與$\overrightarrow$是單位向量,則$\overrightarrow{a}$•$\overrightarrow$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com