如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點(diǎn)E是BC邊上的中點(diǎn).
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED;②求二面角P-AB-C大。
(1)證明:∵E為BC邊中點(diǎn)∴CE=
1
2
BC=
1
2
CD

又∵∠BCD=60°∴DE⊥BC∴DE⊥AD
∵PD⊥AD∴AD⊥面PDE
(2)∵AD⊥面PDE∴AD⊥PD,AD⊥DE
∴∠PDE為二面角P-AD-C的平面角∴∠PDE=60°
過P作PF⊥DE交于F,則PF⊥面ABCD
∴PF=PDsin60°=4,DF=PDcos60°=
4
3
3

在底面ABCD中:DE=4sin60°=2
3

SABED=6
3

∴①VP-ABED=
1
3
SABED•PF=
1
3
×6
3
×4=8
3

②連接BF.∵EF=
2
3
3
,BE=2
tan∠EBF=
3
3
∴∠EBF=30°
∴∠FBA=120°-30°=90°∴FB⊥AB
∵PF⊥面ABCD∴PB⊥AB
∴∠PBF為二面角P-AB-C平面角.
在△BEF中:BF=2EF=
4
3
3

tan∠PBF=
3
,∴∠PBF=60°
∴二面角P-AB-C為60°
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在棱長都為a的正三棱柱ABC-A1B1C1中,P是A1B的中點(diǎn).
(Ⅰ)求PC與平面ABB1A1所成的角;
(Ⅱ)求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

三棱錐S-ABC中,底面為邊長為6的等邊三角形,SA=SB=SC,三棱錐的高為
3
,則側(cè)面與底面所成的二面角為( 。
A.45°B.30°C.60°D.65°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD所在平面與矩形ACEF所在平面垂直,其中AB=
2
,AF=1,M是EF中點(diǎn).
(1)求證:AM平面BDE;
(2)求二面角A-BD-F的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)O是正方形紙片ABCD的中心,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn),現(xiàn)沿對角線AC把紙片折成直二面角,則紙片折后∠EOF的大小為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正方形ABCD沿其對角線AC將△ADC折起,設(shè)AD與平面ABC所成的角為β,當(dāng)β取最大值時(shí),二面角B-AC-D的大小為( 。
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a.
(I)若M是底面ABCD的一個(gè)動點(diǎn),且滿足|MB|=|MS|,求點(diǎn)M在正方形ABCD內(nèi)的軌跡;
(II)試問在線段SD上是否存在點(diǎn)E,使二面角C-AE-D的大小為60°?若存在,確定點(diǎn)E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三棱柱ABC-A1B1C1中,∠ABC=90°,BB1⊥底面ABC,D為棱AC的中點(diǎn),E為棱A1C1的中點(diǎn),且AB=BC=BB1=1.
(1)求證:CE平面BA1D.
(2)求二面角A1-BD-C的余弦值.
(3)棱CC1上是否存在一點(diǎn)P,使PD⊥平面A1BD,若存在,試確定P點(diǎn)位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在三棱錐P-ABC中,D、E分別是BC、AB的中點(diǎn),PA⊥平面ABC,∠BAC=90°,AB≠AC,AC>AD,PC與DE所成的角為α,PD與平面ABC所成的角為β,二面角P-BC-A的平面角為γ,則α,β,γ的大小關(guān)系是( 。
A.α<β<γB.α<γ<βC.β<α<γD.γ<β<α

查看答案和解析>>

同步練習(xí)冊答案