已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

【答案】

,點(diǎn)M的坐標(biāo)為(0,1)。

【解析】(1)設(shè)

因此所求橢圓的方程為:   ………………5分

   (2)動(dòng)直線(xiàn)l的方程為:,

   ………………10分

由假設(shè)得對(duì)于任意的恒成立,

因此,在y軸上存在定點(diǎn)M,使得以AB為直徑的圓恒過(guò)這個(gè)點(diǎn),

點(diǎn)M的坐標(biāo)為(0,1)。  ………………13分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:陜西省鐵一中2012屆高三第二次模擬考試數(shù)學(xué)理科試題 題型:044

如圖,已知橢圓C:的左、右焦點(diǎn)為F1、F2,其上頂點(diǎn)為A.已知△F1AF2是邊長(zhǎng)為2的正三角形.

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)Q(-4,0)任作一直線(xiàn)l交橢圓C于M,N兩

點(diǎn),記=λ·.若在線(xiàn)段MN上取一點(diǎn)R,使得=-λ·,試判斷當(dāng)直線(xiàn)l運(yùn)動(dòng)時(shí),點(diǎn)R是否在某一定直線(xiàn)上運(yùn)動(dòng)?若在,請(qǐng)求出該定直線(xiàn)的方程,若不在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省宿州市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年正定中學(xué)高二下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

(12分)已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程;

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省蚌埠市2010屆高三第三次質(zhì)檢(理) 題型:解答題

 

        已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程;

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案