與函數(shù)f (x)有關的奇偶性,有下列三個命題:
①若f (x)為奇函數(shù),則f (0)=0;
②若f (x)的定義域內(nèi)含有非負實數(shù),則f(|x|)必為偶函數(shù);
③若f (-x)有意義,則f (x)必能寫成一個奇函數(shù)與一個偶函數(shù)之和.
其中,真命題為
 
(寫出你認為正確的所有命題的代號)
分析:根據(jù)函數(shù)奇偶性的定義分別進行判斷即可.
解答:解:①函數(shù)為奇函數(shù),則定義域關于原點對稱,但不一定有f (0)=0,比如函數(shù)f(x)=
1
x
滿足是奇函數(shù),但f(0)無意義,∴①錯誤.
②若函數(shù)為偶函數(shù),則定義域關于原點對稱,若f (x)的定義域內(nèi)含有非負實數(shù),則定義域不一定關于原點對稱,∴②不一定正確.
③若f(x)可分解為一個奇函數(shù)與一個偶函數(shù)的和,不妨設f(x)=g(x)+h(x),其中g(x)為偶函數(shù),h(x)為奇函數(shù),
則f(-x)=g(-x)+h(-x)=g(x)-h(x),則聯(lián)立兩式得,g(x)=
f(x)+f(-x)
2
,h(x)=
f(x)-f(-x)
2
,此種分解方法只有一種,∴③正確.
故正確的是③.
故答案為:③
點評:本題主要考查函數(shù)的奇偶性的定義和性質(zhì)的應用,利用函數(shù)奇偶性的定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣西北海市合浦七中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣西北海市合浦七中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

同步練習冊答案