已知數(shù)列的各項均是正數(shù),其前項和為,滿足.
(I)求數(shù)列的通項公式;
(II)設(shè)數(shù)列的前項和為,求證:.
(Ⅰ). (Ⅱ)詳見解析.
解析試題分析:(Ⅰ)首先令求出首項,.
由兩式相減,得即.所以,
數(shù)列是首項為2,公比為的等比數(shù)列.由等比數(shù)列的通項公式便可得數(shù)列的通項公式.
(Ⅱ)證明有關(guān)數(shù)列前項和的不等式,一般有以下兩種思路:一種是先求和后放縮,一種是先放縮后求和.在本題中,由(Ⅰ)可得:,.這顯然用裂項法求和,然后用放縮法即可證明.
試題解析:(Ⅰ)由題設(shè)知, 2分
由兩式相減,得.
所以. 4分
可見,數(shù)列是首項為2,公比為的等比數(shù)列。
所以 6分
(Ⅱ), 8分
. 10分
=. 12分
考點(diǎn):1、等比數(shù)列;2、裂項法;3、不等式的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
(1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流.某大學(xué)大三學(xué)生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品.銀行貸款的年利率為6%,約定一年后一次還清貸款.已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要交納個人所得稅為該月所獲利潤的20%,當(dāng)月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營,如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設(shè)夏某第n個月月底余元,第n+l個月月底余元,寫出a1的值并建立與的遞推關(guān)系;
(2)預(yù)計年底夏某還清銀行貸款后的純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)(1,)是函數(shù)且)的圖象上一點(diǎn),等比數(shù)列的前項和為,數(shù)列的首項為,且前項和滿足-=+().
(1)求數(shù)列和的通項公式;
(2)求數(shù)列{前項和為,問>的最小正整數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)在與之間插入個數(shù)連同與按原順序組成一個公差為()的等差數(shù)列.
①設(shè),求數(shù)列的前和;
②在數(shù)列中是否存在三項(其中成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項,前n項和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項公式及的值;
(Ⅱ)比較+++ +與Sn的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
記數(shù)列的前n項和,且,且成公比不等于1的等比數(shù)列。
(1)求c的值;
(2)設(shè),求數(shù)列{}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com