求曲線f(x)=x3-3x2+2x過原點(diǎn)的切線方程.
分析:求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義:切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率,分原點(diǎn)是切點(diǎn)和原點(diǎn)不是切點(diǎn)兩類求.
解答:解f′(x)=3x
2-6x+2.設(shè)切線的斜率為k.
(1)當(dāng)切點(diǎn)是原點(diǎn)時(shí)k=f′(0)=2,
所以所求曲線的切線方程為y=2x.
(2)當(dāng)切點(diǎn)不是原點(diǎn)時(shí),設(shè)切點(diǎn)是(x
0,y
0),
則有y
0=x
03-3x
02+2x
0,k=f′(x
0)=3x
02-6x
0+2,①
又k=
=x
02-3x
0+2,②
由①②得x
0=
,k=
=-
.
∴所求曲線的切線方程為y=-
x.
故曲線的切線方程是y=2x;y=-
x 點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:切點(diǎn)處的導(dǎo)數(shù)值是切線的斜率;注意“在點(diǎn)處的切線”與“過點(diǎn)的切線”的區(qū)別.