設(shè)a≥0,f (x)=x-1-ln2x+2a ln x(x>0).
(Ⅰ)令F(x)=xf'(x),討論F(x)在(0.+∞)內(nèi)的單調(diào)性并求極值;
(Ⅱ)求證:當(dāng)x>1時,恒有x>ln2x-2a ln x+1.
【答案】
分析:(1)先根據(jù)求導(dǎo)法求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,求出單調(diào)區(qū)間及極值即可.
(2)欲證x>ln
2x-2a ln x+1,即證x-1-ln
2x+2alnx>0,也就是要證f(x)>f(1),根據(jù)第一問的單調(diào)性即可證得.
解答:解:(Ⅰ)根據(jù)求導(dǎo)法則有
,
故F(x)=xf'(x)=x-2lnx+2a,x>0,
于是
,
∴知F(x)在(0,2)內(nèi)是減函數(shù),在(2,+∞)內(nèi)是增函數(shù),
所以,在x=2處取得極小值F(2)=2-2ln2+2a.
(Ⅱ)證明:由a≥0知,F(xiàn)(x)的極小值F(2)=2-2ln2+2a>0.
于是知,對一切x∈(0,+∞),恒有F(x)=xf'(x)>0.
從而當(dāng)x>0時,恒有f'(x)>0,故f(x)在(0,+∞)內(nèi)單調(diào)增加.
所以當(dāng)x>1時,f(x)>f(1)=0,即x-1-ln
2x+2alnx>0.
故當(dāng)x>1時,恒有x>ln
2x-2alnx+1.
點評:本題主要考查學(xué)生綜合運用導(dǎo)數(shù)知識分析問題、解決問題的能力,本小題主要考查函數(shù)的導(dǎo)數(shù),單調(diào)性,不等式等基礎(chǔ)知識.