分析 欲求切線的極坐標(biāo)方程,設(shè)M(ρ,θ)是過P點的圓C的切線上的任一點,即尋找ρ與θ的關(guān)系即可,這需要充分利用幾何圖形Rt△PMC的邊角關(guān)系才行.
解答 解:由題設(shè)知,圓心C($\sqrt{3}$,0),P(0,1),
∴∠PCO=$\frac{π}{6}$,
設(shè)M(ρ,θ)是過P點的圓C的切線上的任一點,
則在Rt△PMC中,有$ρcos(θ-\frac{5π}{6})$=2,即為所求切線的極坐標(biāo)方程.
故答案為$ρcos(θ-\frac{5π}{6})$=2.
點評 本題主要考查了簡單曲線的極坐標(biāo)方程的求法,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-5)∪(5,+∞) | B. | (-∞,-5)∪[5,+∞) | C. | (-∞,-5]∪[5,+∞) | D. | (-∞,-5]∪(5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π2-1 | B. | π2+1 | C. | -π | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com