14.當(dāng)m∈[1,5)時,函數(shù)f(x)=(m-1)x2-(m-1)x+1的圖象總在x軸上方.

分析 通過討論m=1和m≠1結(jié)合二次函數(shù)的性質(zhì)得到關(guān)于m的不等式組,解出即可.

解答 解:m=1時:f(x)=1,圖象在x軸上方,
m≠1時:$\left\{\begin{array}{l}{m-1>0}\\{△{=(m-1)}^{2}-4(m-1)<0}\end{array}\right.$,
解得:1<m<5,
綜上:m∈[1,5),
故答案為:[1,5).

點評 本題考查了二次函數(shù)的性質(zhì),考查分類討論,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓上一點與兩個焦點的距離之和為10,焦距是函數(shù):f(x)=x2-6x-16的零點.則橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$或$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.平面向量$\overrightarrow a,\overrightarrow b$滿足$(\overrightarrow a+\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=-12$,且$|\overrightarrow a|=2$,$|\overrightarrow b|=4$,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為(  )
A.$\sqrt{3}$B.2C.-2D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果橢圓的對稱軸為坐標(biāo)軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且a-c=$\sqrt{3}$,那么橢圓的方程是$\frac{x^2}{12}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.當(dāng)x∈(-1,2]時,函數(shù)f(x)=3x的值域為($\frac{1}{3}$,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-ax}$在(-∞,1]是增函數(shù),則a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知兩定點A(-2,0),B(1,0),若動點P滿足|PA|=2|PB|,則P的軌跡為( 。
A.直線B.線段C.D.半圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.平面內(nèi)到兩定點F1(-3,0)、F2(3,0)的距離之差的絕對值等于4的點M的軌跡(  )
A.橢圓B.線段C.兩條射線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若數(shù)列{an}滿足an=$\frac{{2}^{n}}{{n}^{2}}$,則an的最小值為$\frac{8}{9}$.

查看答案和解析>>

同步練習(xí)冊答案