13.若y=f(x)是定義在[1,8]上的單調(diào)遞減函數(shù),且f(2t)-f(t+2)<0,求t的取值范圍.

分析 根據(jù)題意,利用函數(shù)y=f(x)在[1,8]上是單調(diào)減函數(shù),列出不等式組,求出解集即可.

解答 解:∵函數(shù)y=f(x)是定義在[1,8]上的單調(diào)遞減函數(shù),
且f(2t)-f(t+2)<0,
∴f(2t)<f(t+2),
即1≤t+2<2t≤8;
解得2<t≤4;
∴實(shí)數(shù)t的取值范圍是(2,4].

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)函數(shù)的單調(diào)性質(zhì)列出不等式組,求出答案來,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}
(1)若m=4,求A∪B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的為( 。
A.y=3xB.y=2x(-1≤x<1)
C.$y=\left\{\begin{array}{l}{x^2}+x,x>0\\{x^2}-x,x<0\end{array}\right.$D.y=2x-2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5]
(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù)
(3)已知函數(shù)y=x+$\frac{t}{x}$有如下性質(zhì):
如果常數(shù)t>0,那么該函數(shù)(0,$\sqrt{t}$]上是減函數(shù),在[$\sqrt{t}$,+∞)上是增函數(shù).
利用上述性質(zhì),直接寫出函數(shù)g(x)=$\frac{f(x)}{x}$,x∈(0,5]的單調(diào)區(qū)間,并求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中角A,B,C的對(duì)邊分別為a,b,c,若b=4,c=2,A=60°,則此三角形外接圓的半徑為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)對(duì)定義域[-1,1]內(nèi)的任意實(shí)數(shù)x,y總有f(x)+f(y)=f(x+y)
(1)證明:f(x)在[-1,1]上是增函數(shù);
(2)解不等式f(x2-1)+f(3-3x)<0
(3)若f(x)≤t2-2at+1對(duì)任意x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某房地產(chǎn)公司新建小區(qū)有A、B兩種戶型住宅,其中A戶型住宅每套面積為100平方米,B戶型住宅每套面積為80平方米.該公司準(zhǔn)備從兩種戶型住宅中各拿出12套銷售給內(nèi)部員工,下表是這24套住宅每平方米的銷售價(jià)格:(單位:萬元/平方米):
房41017123456789101112
A戶型2.62.72.82.82.93.22.93.13.43.33.43.3
B戶型3.63.73.73.93.8.3.94.34.44.14.24.34.5
(Ⅰ)這24套住宅中,求一套B戶型住宅總價(jià)格超過任意一套A戶型住宅總價(jià)格的概率;
(Ⅱ)該公司決定對(duì)上述24套住房通過抽簽方式銷售,購房者根據(jù)自己的需求只能在其中一種戶型中通過抽簽方式隨機(jī)獲取房號(hào),每位購房者只有一次抽簽機(jī)會(huì).
小明是第一位抽簽的員工,經(jīng)測(cè)算其購買能力最多為320萬元,抽簽后所抽得住房?jī)r(jià)格在其購買能力范圍內(nèi)則確定購買,否則,將放棄此次購房資格.為了使其購房成功的概率更大,他應(yīng)該選擇哪一種戶型抽簽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知{an}是首項(xiàng)為1,公差為2的等差數(shù)列,Sn表示{an}的前n項(xiàng)和.
(Ⅰ)求an及Sn;
(Ⅱ)設(shè){bn}是首項(xiàng)為2的等比數(shù)列,公比q滿足q2-(a4-3)q+S2=0.求{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)={x^{\frac{1}{2}}}-2+{log_2}x$的零點(diǎn)所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案