已知向量
a
,
b
滿足|
a
|=|
b
|=2,
a
b
的夾角為120°,則|
a
-
b
|的值為( 。
A、1
B、2
3
C、3
2
D、12
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量的數(shù)量積的定義和性質(zhì),向量的平方即為模的平方,由完全平方公式計(jì)算即可得到.
解答: 解:由向量
a
b
的夾角為120°,|
a
|=|
b
|=2,
a
b
=2×2×cos120°=-2,
即有|
a
-
b
|=
(
a
-
b
)2
=
a
2
+
b
2
-2
a
b

=
4+4-(-4)
=2
3

故選B.
點(diǎn)評(píng):本題考查向量的數(shù)量積的定義和性質(zhì),主要考查向量的平方即為模的平方,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足:?x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤|x1-x2|成立,則稱f(x)∈Ψ.對(duì)于函數(shù)g(x)=x3-x,h(x)=
1+x,x<0
cosx,x≥0
,有( 。
A、g(x)∈Ψ且h(x)∈Ψ
B、g(x)∈Ψ且h(x)∉Ψ
C、g(x)∉Ψ且h(x)∈Ψ
D、g(x)∉Ψ且h(x)∉Ψ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
x
,若f(c)=-f′(c),求實(shí)數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(sin2x,cos2x),
b
=(sin2x,-cos2x),f(x)=
a
b
+4cos2x+2
3
sinxcosx.如果?m∈R,對(duì)?x∈R都有f(x)≥f(m),則f(m)等于( 。
A、2+2
3
B、3
C、0
D、2-2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(
25π
3
)+tan(-
15π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半徑是3
3
的⊙O中,AB是直徑,MN是過點(diǎn)A的⊙O的切線,AC,BD相交于點(diǎn)P,且∠DAN=30°,CP=2,PA=9,又PD>PB,則線段PD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=|x-3|+1,g(x)=kx,若函數(shù)F(x)=f(x)-g(x) 有兩個(gè)零點(diǎn),求k的范圍.
(2)函數(shù)h(x)=
4-x2
,m(x)=2x+b,若方程h(x)=m(x)有兩個(gè)不等的實(shí)根,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長(zhǎng)為2的正三角形,B為線段EF的中點(diǎn),且EF=3,則
AB
AE
+
AC
AF
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案