已知全集U=R,集合A={x|2x>1},,則A∩(CUB)=( )
A.{x|x>1}
B.{x|0<x<1}
C.{x|0<x≤1}
D.{x|x≤1}
【答案】分析:通過解不等式結(jié)合函數(shù)的性質(zhì),求出集合A、B,然后求解A∩CUB即可.
解答:解:由于2x>1⇒x>0;
⇒x>1.
分別把兩個(gè)集合表示為A={x|x>0},B={x|x>1},
所以CUB={x|x≤1},
A∩(CUB)={x|0<x≤1}.
故選C.
點(diǎn)評:本題考查其他不等式的解法,交、并、補(bǔ)集的混合運(yùn)算,考查函數(shù)的性質(zhì),考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|4≤2x<16},B={x|3≤x<5},求:
(Ⅰ)?U(A∩B)
(Ⅱ)若集合C={x|x>a},且B?C,求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|2x<1},B={x|log3x>0},則A∩(?UB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|2x>1},集合N={x|log2x>1},則下列結(jié)論中成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|(x-1)2≤4},則CUA等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={-1,0,1},B={x|x2-2x<0},則A∩?UB=( 。

查看答案和解析>>

同步練習(xí)冊答案