【題目】小明下班回家途經(jīng)3個有紅綠燈的路口,交通法規(guī)定:若在路口遇到紅燈,需停車等待;若在路口沒遇到紅燈,則直接通過.經(jīng)長期觀察發(fā)現(xiàn):他在第一個路口遇到紅燈的概率為,在第二、第三個道口遇到紅燈的概率依次減小,在三個道口都沒遇到紅燈的概率為,在三個道口都遇到紅燈的概率為,且他在各路口是否遇到紅燈相互獨立.

1)求小明下班回家途中至少有一個道口遇到紅燈的概率;

2)求小明下班回家途中在第三個道口首次遇到紅燈的概率;

3)記為小明下班回家途中遇到紅燈的路口個數(shù),求數(shù)學期望.

【答案】1;(2;(3.

【解析】

1)根據(jù)對立事件的概率關(guān)系結(jié)合已知,即可求解;

2)設(shè)第二、三個道口遇到紅燈的概率分別為,根據(jù)已知列出關(guān)于方程組,求得,即可求出結(jié)論;

3的可能值為分別求出概率,得出隨機變量的分布列,由期望公式,即可求解.

1)因為小明在三個道口都沒遇到紅燈的概率為,

所以小明下班回家途中至少有一個道口遇到紅燈的概率為;

(2)設(shè)第二、三個道口遇到紅燈的概率分別為

依題意解得(舍去),

所以小明下班回家途中在第三個道口首次遇到紅燈的概率;

3的可能值為,

,

,

分布列為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進行參保與理賠.該保險公司對5個險種參?蛻暨M行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參?傎M用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,, ,

1)證明:平面;

2)求點到平面的距離;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60/盒、65/盒、80/盒、90/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%

①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;

②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近兩年來,以《中國詩詞大會》為代表的中國文化類電視節(jié)目帶動了一股中國文化熱潮.某臺舉辦闖關(guān)答題比賽,共分兩輪,每輪共有4類題型,選手從前往后逐類回答,若中途回答錯誤,立馬淘汰,若全部回答正確,就能獲得一枚復活幣并進行下一輪答題,兩輪都通過就可以獲得最終獎金.選手在第一輪闖關(guān)獲得的復活幣,系統(tǒng)會在下一輪答題中自動使用,即下一輪重新進行闖關(guān)答題時,在某一類題型中回答錯誤,自動復活一次,視為答對該類題型.若某選手每輪的4類題型的通過率均分別為、、,則該選手進入第二輪答題的概率為_________;該選手最終獲得獎金的概率為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某周末,鄭州方特夢幻王國匯聚了八方來客.面對該園區(qū)內(nèi)相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同.某統(tǒng)計機構(gòu)對園區(qū)內(nèi)的100位游客(這些游客只在兩個主題公園中二選一)進行了問卷調(diào)查.調(diào)查結(jié)果顯示,在被調(diào)查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20.

1)根據(jù)題意,請將下面的列聯(lián)表填寫完整;

選擇“西游傳說”

選擇“千古蝶戀”

總計

成年人

未成年人

總計

2)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有的把握認為選擇哪個主題公園與年齡有關(guān).

附參考公式與表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機抽取了位醫(yī)護人員的關(guān)愛患者考核分數(shù)(患者考核:分制),用相關(guān)的特征量表示;醫(yī)護專業(yè)知識考核分數(shù)(試卷考試:分制),用相關(guān)的特征量表示,數(shù)據(jù)如下表:

(1)求關(guān)于的線性回歸方程(計算結(jié)果精確到);

(2)利用(1)中的線性回歸方程,分析醫(yī)護專業(yè)考核分數(shù)的變化對關(guān)愛患者考核分數(shù)的影響,并估計當某醫(yī)護人員的醫(yī)護專業(yè)知識考核分數(shù)為分時,他的關(guān)愛患者考核分數(shù)(精確到).

參考公式及數(shù)據(jù):回歸直線方程中斜率和截距的最小二乘法估計公式分別為

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,點在第一象限,以為直徑的圓與軸相切,動點的軌跡為曲線.

1)求曲線的方程;

2)若曲線在點處的切線的斜率為,直線的斜率為,求滿足的點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四種說法:

①命題的否定是,;

②若不等式的解集為,則不等式的解集為

③對于,恒成立,則實數(shù)a的取值范圍是;

④已知p,q),若pq的充分不必要條件,則實數(shù)a的取值范圍是

正確的有________.

查看答案和解析>>

同步練習冊答案