【題目】已知曲線
(1)若,求經過點且與曲線只有一個公共點的直線方程:
(2)若,請在直角坐標平面內找出縱坐標不同的兩個點,此兩點滿足條件:無論如何變化,這兩個點都不在曲線上;
(3)若曲線與線段有公共點,求的最小值。
【答案】(1)或(2)16
【解析】
(1)由題得曲線為,設直線,聯(lián)立得,再根據(jù)即得m的值和直線的方程.(2)由題得曲線為,當,,當,無論如何變化,曲線都不可能為,所以兩點可以是和,,.(3)
聯(lián)立得,當,,
當,對分類討論得到的最小值.
(1)曲線為,設直線,聯(lián)立得,
∴所求直線方程為或
(2)曲線為,當,,當,。,
∴無論如何變化,曲線都不可能為,∴兩點可以是和,,
(3)聯(lián)立得,當,,
當,①,,,數(shù)形結合可得
②,且只一個共公點,,,,
數(shù)形結合可得,
③,,且有兩個公共點,,,,
,,,數(shù)形結合可得
④,,且有兩個公共點,,,,
,,,不符,舍去
綜上所述,的最小值為16
科目:高中數(shù)學 來源: 題型:
【題目】某小學對一年級的甲、乙兩個班進行“數(shù)學學前教育”對“小學數(shù)學成績優(yōu)秀”影響的試驗,其中甲班為試驗班(實施了數(shù)學學前教育),乙班為對比班(和甲班一樣進行常規(guī)教學,但沒有實施數(shù)學學前教育),在期末測試后得到如下數(shù)據(jù):
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 | |
甲班 | 30 | 20 | 50 |
乙班 | 25 | 25 | 50 |
總計 | 55 | 45 | 100 |
能否在犯錯誤的概率不超過0.01的前提下,認為進行“數(shù)學學前教育”對“小學數(shù)學成績優(yōu)秀”有積極作用?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為,坐標原點O到直線x+y-b=0的距離為.
(1)求橢圓C的標準方程;
(2)設過橢圓C的右焦點F且傾斜角為45°的直線l與橢圓C交于A,B兩點,對于橢圓C上一點M,若(λ>0,μ>0),求λμ的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場在國慶黃金周的促銷活動中,對10月1日9時至14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示.已知9時至10時的銷售額為3萬元,則11時至12時的銷售額為萬元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公園準備在一圓形水池里設置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,A,B兩點為噴泉,圓心O為AB的中點,其中OA=OB=a米,半徑OC=10米,市民可位于水池邊緣任意一點C處觀賞.
(1)若當∠OBC= 時,sin∠BCO= ,求此時a的值;
(2)設y=CA2+CB2 , 且CA2+CB2≤232.
(i)試將y表示為a的函數(shù),并求出a的取值范圍;
(ii)若同時要求市民在水池邊緣任意一點C處觀賞噴泉時,觀賞角度∠ACB的最大值不小于 ,試求A,B兩處噴泉間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)的散點圖,這些點將不會落在一條直線上,但在一段時間內的增長數(shù)據(jù)有時可以用線性回歸來分析,下表是一位母親給兒子做的成長記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 91.8 | 97.6 | 104.2 | 110.9 | 115.6 | 122.0 | 128.5 |
年齡/周歲 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
身高/cm | 134.2 | 140.8 | 147.6 | 154.2 | 160.9 | 167.5 | 173.0 |
(1)年齡(解釋變量)和身高(預報變量)之間具有怎樣的相關關系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)試判斷該函數(shù)模型是否能夠較好地反映年齡與身高的關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com