(2013•韶關(guān)二模)(坐標(biāo)系與參數(shù)方程選做題)
在極坐標(biāo)系中,過(guò)點(diǎn)A(2, -
π
2
)
引圓ρ=4sinθ的一條切線(xiàn),則切線(xiàn)長(zhǎng)為
2
3
2
3
分析:把極坐標(biāo)轉(zhuǎn)化為直角坐標(biāo),利用ρ2=x2+y2,ρsinθ=y,極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,如圖:利用勾股定理求出切線(xiàn)長(zhǎng).
解答:解:在極坐標(biāo)系中,過(guò)點(diǎn)A(2, -
π
2
)
引圓ρ=4sinθ的一條切線(xiàn),
在直角坐標(biāo)系下,A(0,-2),圓的方程化為x2+y2-4y=0,
如圖:圓心(0,2),半徑:2
切線(xiàn)長(zhǎng)為:
42-22
=2
3

故答案為:2
3
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,考查轉(zhuǎn)化思想,計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)函數(shù)f(x)=lnx-
1
x-1
的零點(diǎn)的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)在極坐標(biāo)系中,過(guò)點(diǎn)A(1,-
π2
)引圓ρ=8sinθ的一條切線(xiàn),則切線(xiàn)長(zhǎng)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)若a,b∈R,i為虛數(shù)單位,且(a+i)i=b+
5
2-i
,則a+b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)設(shè)點(diǎn)P是雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限的交點(diǎn),其中F1,F(xiàn)2分別是雙曲線(xiàn)的左、右焦點(diǎn),若tan∠PF2F1=3,則雙曲線(xiàn)的離心率為
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•韶關(guān)二模)已知橢圓
x2
a2
+
y2
a2-1
=1(a>1)的左右焦點(diǎn)為F1,F(xiàn)2,拋物線(xiàn)C:y2=2px以F2為焦點(diǎn)且與橢圓相交于點(diǎn)M(x1,y1)、N(x2,y2),點(diǎn)M在x軸上方,直線(xiàn)F1M與拋物線(xiàn)C相切.
(1)求拋物線(xiàn)C的方程和點(diǎn)M、N的坐標(biāo);
(2)設(shè)A,B是拋物線(xiàn)C上兩動(dòng)點(diǎn),如果直線(xiàn)MA,MB與y軸分別交于點(diǎn)P,Q.△MPQ是以MP,MQ為腰的等腰三角形,探究直線(xiàn)AB的斜率是否為定值?若是求出這個(gè)定值,若不是說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案