【題目】如圖,在三棱柱中,側(cè)面底面, ,點(diǎn) 分別是, 的中點(diǎn).

(1)證明: 平面;

(2)若 ,求直線與平面所成角的正弦值.

【答案】(1)詳見解析;(2).

【解析】試題分析:

(1)利用題意由 平面,可證得平面平面.

由題意可得結(jié)論成立.

(2)建立空間直角坐標(biāo)系,利用空間直角坐標(biāo)系的結(jié)論可得直線與平面所成角的正弦值為.

試題解析:

(1)證明:取的中點(diǎn),連接

的中點(diǎn), ,

是三棱柱, ,

, 平面,

的中點(diǎn), , 平面,

平面平面

平面

(2)過點(diǎn),垂足為,連接,

側(cè)面底面, 平面

,

, ,

, ,由余弦定理得,

, , ,

分別以, , 軸, 軸, 軸,建立如圖的空間直角坐標(biāo)系,

由題設(shè)可得, , , ,

設(shè)是平面的一個(gè)法向量,

,

,

直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,已知DA=DC=4,DD1=3,求直線A1B與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=ax﹣3.
(1)當(dāng)a=l時(shí),確定函數(shù)h(x)=f(x)﹣g(x)在(0,+∞)上的單調(diào)性;
(2)若對(duì)任意x∈[0,4],總存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ),曲線處的切線方程為.

(Ⅰ)求, 的值;

(Ⅱ)證明:

(Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對(duì)數(shù)的底數(shù), ),若的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0).
(1)證明函數(shù)f(x)在(0,2]上是減函數(shù),(2,+∞)上是增函數(shù);
(2)若方程f(x)=0有且只有一個(gè)實(shí)數(shù)根,判斷函數(shù)g(x)=f(x)﹣4的奇偶性;
(3)在(2)的條件下探求方程f(x)=m(m≥8)的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,集合A={x||x|≤2},B={x| >0},則A∩RB=(
A.[﹣2,1)
B.[﹣2,1]
C.[﹣2,2]
D.[﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,底面四邊形ABCD為菱形,AB=2,BD=2 ,M,N分別是線段PA,PC的中點(diǎn). (Ⅰ)求證:MN∥平面ABCD;
(Ⅱ)求異面直線MN與BC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P﹣ABC中,PO⊥面ABC,垂足為O,若PA⊥BC,PC⊥AB,求證:
(1)AO⊥BC
(2)PB⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當(dāng)天參與網(wǎng)購的顧客中隨機(jī)抽查了男女各30人,統(tǒng)計(jì)其網(wǎng)購金額,得到如下頻率分布直方圖:

網(wǎng)購達(dá)人

非網(wǎng)購達(dá)人

合計(jì)

男性

30

女性

12

30

合計(jì)

60

若網(wǎng)購金額超過千元的顧客稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過千元的顧客稱為“非網(wǎng)購達(dá)人”.

(Ⅰ)若抽取的“網(wǎng)購達(dá)人”中女性占12人,請(qǐng)根據(jù)條件完成上面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購達(dá)人”與性別有關(guān)?

(Ⅱ)該營銷部門為了進(jìn)一步了解這名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定12人,若需從這12人中隨機(jī)選取人進(jìn)行問卷調(diào)查.設(shè)為選取的人中“網(wǎng)購達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.

(參考公式: ,其中

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案