已知函數(shù)
(1)求函數(shù)的最大值;
(2)若的取值范圍.
(1)0;(2)

試題分析:(1)先求,再利用判斷函數(shù)的單調(diào)性并求最值;
(2)由題設(shè)知先求其導(dǎo)數(shù)得
因為,所以,可分,,三種情況探究,進而得到函數(shù)變化性質(zhì),并從中找出滿足的取值范圍.
解:(1),                         1分
當(dāng)時,;當(dāng)時,;當(dāng)時,
所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;  3分
.                      4分
(2)由,得.    6分
當(dāng)時,由(1)得成立;    8分
當(dāng)時,因為,所以時,
成立;                      10分
當(dāng)時,因為,所以.13分
綜上,知的取值范圍是.                14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知,其中e為自然對數(shù)的底數(shù).
(1)若是增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,求函數(shù)上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時,f(x)=ln x-ax,當(dāng)x∈(-2,0)時,f(x)的最小值為1,則a的值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)(2011•陜西)設(shè)f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對任意x>0成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若當(dāng)時,函數(shù)的最大值為,求的值;
(2)設(shè)為函數(shù)的導(dǎo)函數(shù)),若函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)已知區(qū)間是不等式的解集的子集,求的取值范圍;
(2)已知函數(shù),在函數(shù)圖像上任取兩點、,若存在使得恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)
(1)若求函數(shù)的極值點及相應(yīng)的極值;
(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知f(x)=xsinx,則f′(π)=(  )
A.OB.﹣1C.πD.﹣π

查看答案和解析>>

同步練習(xí)冊答案