在等差數(shù)列{bn}中,首項(xiàng)b1=1,前10項(xiàng)和為55,若bn=log2an,求滿足a1+a2+a3+…+an≥100的最小整數(shù)n.
考點(diǎn):等比數(shù)列的前n項(xiàng)和,等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)等差數(shù)列{bn}的公差為d,由求和公式可得關(guān)于d的方程,解方程可得d,可得通項(xiàng)公式,進(jìn)而可得{an}的通項(xiàng)公式,由等比數(shù)列的求和公式可得a1+a2+a3+…+an的式子,代n值驗(yàn)證可得.
解答: 解:設(shè)等差數(shù)列{bn}的公差為d,
由求和公式可得前10項(xiàng)和S10=10×1+
10×9
2
d=55,
解得d=1,
∴bn=1+(n-1)×1=n,
∴l(xiāng)og2an=n,∴an=2n
∴a1+a2+a3+…+an=
1×(1-2n)
1-2
=2n-1,
經(jīng)驗(yàn)證,當(dāng)n=6時(shí),2n-1=63,當(dāng)n=7時(shí),2n-1=127,
∴滿足條件的最小整數(shù)為:7
點(diǎn)評(píng):本題考查等差數(shù)列和等比數(shù)列的求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f:x→log2x是集合A到集合B的映射,若A={l,2,4},則對(duì)應(yīng)的集合B等于(  )
A、{0,1}
B、{0,2}
C、{0,1,2}
D、{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
4
x

(1)證明f(x)在(0,2)上單調(diào)遞減,并求f(x)在[
1
2
,1]上的最值.
(2)判斷f(x)的奇偶性,并證明你的結(jié)論.
(3)函數(shù)f(x)=x+
4
x
(x<0)有最值嗎?如有求出最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,cosC=
3
10

(Ⅰ)若
CB
CA
=
9
2
,求c的最小值;
(Ⅱ)設(shè)向量
x
=(2sinB,-
3
)
,
y
=(cos2B,1-2sin2
B
2
)
,且
x
y
,求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)h(x)=x2-1,f(x)=丨h(huán)(x)丨+x2+kx
(1)當(dāng)x∈(0,2)時(shí),f(x)是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(2)若關(guān)于x的方程f(x)=0在(0,2)上有兩個(gè)解x1、x2,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=-
1
2
,2an=an-1-n-1(n≥2,n∈N*),設(shè)bn=an+n.
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{nbn}的前n項(xiàng)和Tn;
(Ⅲ)若cn=(
1
2
)n-an
,Pn為數(shù)列{
cn2+cn+1
cn2+cn
}
的前n項(xiàng)和,求不超過P2014的最大的整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反三角函數(shù)的形式表示下列各式中的x值:
(1)sinx=
1
7
,x∈[
π
2
,π
];
(2)cosx=-
5
5
,x∈(-π,0);
(3)tanx=-
2
3
,x∈(
π
2
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某著名汽車公司2013年年初準(zhǔn)備將10億元資金投資到“車型更新”項(xiàng)目上,現(xiàn)有兩個(gè)項(xiàng)目供選擇:
項(xiàng)目A:新能源汽車,據(jù)市場調(diào)研,投資到該項(xiàng)目上,到年底可能獲利40%,也可能虧損80%,且這兩種情況發(fā)生的概率分別為
3
4
1
4
;
項(xiàng)目B:城市越野車,據(jù)市場調(diào)研,投資到該項(xiàng)目上,到年底可能獲利50%,可能虧損30%,也可能不賠不賺,且這三種情況發(fā)生的概率分別為
3
5
1
6
、
7
30

(Ⅰ) 針對(duì)以上兩個(gè)投資項(xiàng)目,請(qǐng)你為投資公司選擇一個(gè)合理且較為穩(wěn)妥的項(xiàng)目,并說明理由;
(Ⅱ) 假設(shè)每年兩個(gè)項(xiàng)目的投資環(huán)境及預(yù)期獲利均不變,該投資公司按照你所選擇的項(xiàng)目長期投資(每一年的利潤和本金繼續(xù)用作投資),問大約在哪一年的年底總資產(chǎn)(利潤+本金)可以翻一番?(參考數(shù)據(jù):lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為∠A、∠B、∠C的對(duì)邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則cosA-cosC的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案