已知數(shù)列{an}的前n項(xiàng)和Sn=pn+q(p≠0且p≠1),求證q=-1是數(shù)列{an}成等比數(shù)列的充要條件.
分析:先求出a1的值,再由n≥2時(shí),an=Sn-Sn-1=(p-1)•pn-1進(jìn)而可判定n≥2時(shí),{an}是等比數(shù)列,最后再驗(yàn)證當(dāng)n=1時(shí)q=-1時(shí)可滿足,{an}是等比數(shù)列,從而{an}是等比數(shù)列的必要條件是p≠0且p≠1且q=-1;當(dāng)p≠0且p≠1且q=-1時(shí),根據(jù)Sn=pn-1可求出an=(p-1)•pn-1,進(jìn)而得到
an
an-1
=p即{an}是等比數(shù)列,即可知q=-1是{an}是等比數(shù)列的充分條件.
解答:證明:當(dāng)n=1時(shí),a1=S1=p+q;
當(dāng)n≥2時(shí),an=Sn-Sn-1=(p-1)•pn-1
由于p≠0,p≠1,
∴當(dāng)n≥2時(shí),{an}是等比數(shù)列.要使{an}(n∈N*)是等比數(shù)列,
a2
a1
=p,即(p-1)•p=p(p+q),
∴q=-1,即{an}是等比數(shù)列的必要條件是p≠0且p≠1且q=-1.
再證充分性:
當(dāng)p≠0且p≠1且q=-1時(shí),Sn=pn-1,
an=(p-1)•pn-1,
an
an-1
=p(n≥2),
∴{an}是等比數(shù)列.
點(diǎn)評:本題主要考查等比數(shù)列的充要條件,考查基礎(chǔ)知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于(  )
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案