【題目】已知函數(shù),其中.
(I)討論函數(shù)的單調(diào)性;
(II)若,證明:對任意,總有.
【答案】(I)詳見解析(II)詳見解析
【解析】
試題分析:(I)先求函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)零點(diǎn)或,根據(jù)兩個(gè)零點(diǎn)大小分三種情況討論:若,在,上單調(diào)遞增,在上單調(diào)遞減.若時(shí),則在上單調(diào)遞增.若時(shí),則在,上單調(diào)遞增,在上單調(diào)遞減.(II)同(1)可得:當(dāng)時(shí),在上單調(diào)遞增,因此將所證不等式變量分離得,構(gòu)造函數(shù),只需利用導(dǎo)數(shù)證明函數(shù)單調(diào)遞減
試題解析:解:(I)∵,,
令,得或
①若,則時(shí),;
時(shí),;
時(shí),,
故函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減
②若時(shí),則在上單調(diào)遞增
③若時(shí),則在,上單調(diào)遞增,在上單調(diào)遞減
(II)由(I)可知,當(dāng)時(shí),在上單調(diào)遞增,不妨設(shè),則有,,于是要證,即證,
即證,
令,
∵,
∵,,
∴在上單調(diào)遞減,即有.
故.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且與相交于兩點(diǎn).
(1)當(dāng)時(shí),判斷直線與曲線的位置關(guān)系,并說明理由;
(2)當(dāng)變化時(shí),求弦的中點(diǎn)的普通方程,并說明它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別為橢圓:()的左、右兩個(gè)焦點(diǎn).
(1)若橢圓上的點(diǎn)到,兩點(diǎn)的距離之和等于,求橢圓的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)是(1)中所得橢圓上的動(dòng)點(diǎn),,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),圓的圓心在圓的內(nèi)部,且直線被圓所截得的弦長為.點(diǎn)為圓上異于的任意一點(diǎn),直線與軸交于點(diǎn),直線與軸交于點(diǎn).
(1)求圓的方程;
(2)求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù), 且當(dāng)時(shí),, 求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,且橢圓經(jīng)過點(diǎn),過橢圓的左焦點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)設(shè)線段的垂直平分線與軸交于點(diǎn),求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;
(2)若對任意,且恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)作的平行線交曲線于兩個(gè)不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請說明理由;
(3)記的面積為,的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)如是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值并討論的單調(diào)性;
(2)若是函數(shù)的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍(注:已知常數(shù)滿足).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com