【題目】2019年末,武漢出現(xiàn)新型冠狀病毒(肺炎疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,目前沒有特異治療方法.防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,某社區(qū)將本社區(qū)的排查工作人員分為,兩個小組,排查工作期間社區(qū)隨機抽取了100戶已排查戶,進行了對排查工作態(tài)度是否滿意的電話調查,根據(jù)調查結果統(tǒng)計后,得到如下的列聯(lián)表.
是否滿意 組別 | 不滿意 | 滿意 | 合計 |
組 | 16 | 34 | 50 |
組 | 2 | 45 | 50 |
合計 | 21 | 79 | 100 |
(1)分別估計社區(qū)居民對組、組兩個排查組的工作態(tài)度滿意的概率;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有的把握認為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關?
附表:
附:
【答案】(1)社區(qū)居民對組排查工作態(tài)度滿意的概率估計值為,對組排查工作態(tài)度滿意的概率估計值為(2)有的把握認為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關
【解析】
(1)根據(jù)表格計算滿意人數(shù)與總人數(shù)的比值即可估計兩個排查組的工作態(tài)度滿意的概率;
(2) 計算,與臨界值比較,得出結論.
(1)由樣本數(shù)據(jù),組排查對象對社區(qū)排查工作態(tài)度滿意的比率為,因此社區(qū)居民對組排查工作態(tài)度滿意的概率估計值為.
組排查對象對社區(qū)排查工作態(tài)度滿意的比率為,因此社區(qū)居民對組排查工作態(tài)度滿意的概率估計值為.
(2)假設“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”無關,根據(jù)列聯(lián)表中的數(shù)據(jù),得到
,
因此有的把握認為“對社區(qū)排查工作態(tài)度滿意”與“排查工作組別”有關.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的圖象的一個最高點為(),與之相鄰的一個對稱中心為,將f(x)的圖象向右平移個單位長度得到函數(shù)g(x)的圖象,則( )
A.g(x)為偶函數(shù)
B.g(x)的一個單調遞增區(qū)間為
C.g(x)為奇函數(shù)
D.函數(shù)g(x)在上有兩個零點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地出現(xiàn)了蟲害,農業(yè)科學家引入了“蟲害指數(shù)”數(shù)列,表示第周的蟲害的嚴重程度,蟲害指數(shù)越大,嚴重程度越高,為了治理蟲害,需要環(huán)境整治、殺滅害蟲,然而由于人力資源有限,每周只能采取以下兩個策略之一:
策略:環(huán)境整治,“蟲害指數(shù)”數(shù)列滿足;
策略:殺滅害蟲,“蟲害指數(shù)”數(shù)列滿足;
當某周“蟲害指數(shù)”小于1時,危機就在這周解除.
(1)設第一周的蟲害指數(shù),用哪一個策略將使第二周的蟲害嚴重程度更小?
(2)設第一周的蟲害指數(shù),如果每周都采用最優(yōu)的策略,蟲害的危機最快在第幾周解除?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場一年中各月份的收入、支出(單位:萬元)情況的統(tǒng)計如折線圖所示,則下列說法正確的是( )
A.2至3月份的收入的變化率與11至12月份的收入的變化率相同
B.支出最高值與支出最低值的比是
C.第三季度平均收入為60萬元
D.利潤最高的月份是2月份
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù)若滿足:①對任意、,都有;②對任意,都有,則稱函數(shù)為“中心捺函數(shù)”,其中點稱為函數(shù)的中心.已知函數(shù)是以為中心的“中心捺函數(shù)”,若滿足不等式,當時,的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為, 是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為, ()是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,為平行四邊形,,平面,且,點是的中點.
(1)求證:平面;
(2)在線段上(不含端點)是否存在一點,使得二面角的余弦值為?若存在,確定的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com