【題目】已知橢圓E: 的焦點(diǎn)在 軸上,A是E的左頂點(diǎn),斜率為k(k>0)的直線交E于A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(1)當(dāng)t=4, 時,求△AMN的面積;
(2)當(dāng) 時,求k的取值范圍.
【答案】
(1)
解:當(dāng) 時,橢圓E的方程為 ,A點(diǎn)坐標(biāo)為 ,
則直線AM的方程為 .
聯(lián)立 并整理得,
解得 或 ,則
因為 ,所以
因為 , ,
所以 ,整理得 ,
無實根,所以 .
所以 的面積為
(2)
解:直線AM的方程為 ,
聯(lián)立 并整理得,
解得 或 ,
所以
所以
因為
所以 ,整理得, .
因為橢圓E的焦點(diǎn)在x軸,所以 ,即 ,整理得
解得
【解析】(1)求出t=4時,橢圓方程和頂點(diǎn)A,設(shè)出直線AM的方程,代入橢圓方程,求交點(diǎn)M,運(yùn)用弦長公式求得|AM|,由垂直的條件可得|AN|,再由|AM|=|AN|,解得k=1,運(yùn)用三角形的面積公式可得△AMN的面積;(2)直線AM的方程為y=k(x+ ),代入橢圓方程,求得交點(diǎn)M,可得|AM|,|AN|,再由2|AM|=|AN|,求得t,再由橢圓的性質(zhì)可得t>3,解不等式即可得到所求范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司生產(chǎn)某款手機(jī)的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機(jī)萬只并全部銷售完,每萬只的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時,該公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=tan.
(1)求f(x)的定義域與最小正周期;
(2)設(shè)α∈,若f=2cos 2α,求α的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD交于點(diǎn)O,AB=5,AC=6,點(diǎn)E,F分別在AD,CD上,AE=CF= ,EF交BD于點(diǎn)H.將△DEF沿EF折到△ 的位置, .
(1)證明: 平面ABCD;
(2)求二面角 的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前n項和,并且,對任意正整數(shù)n, ;設(shè)
.
(Ⅰ) 證明:數(shù)列是等比數(shù)列,并求的通項公式;
(Ⅱ) 設(shè),求證: 數(shù)列不可能為等比數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線: ()的焦點(diǎn)為,準(zhǔn)線為, ,且在第一象限,已知以為圓心, 為半徑的圓交于, 兩點(diǎn)(在的上方),為坐標(biāo)原點(diǎn).
(1)若是邊長為的等邊三角形,且直線: ()與拋物線相交于, 兩點(diǎn),證明: 為定值;
(2)記直線與拋物線的另一個交點(diǎn)為,若與的面積比為3,證明:直線過點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)
(1)為了了解工薪階層對工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應(yīng)抽取的人數(shù);
(2)根據(jù)頻率分布直方圖估計這人的平均月工資為多少元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)=(sin x+cos x)2+cos 2x.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com