精英家教網 > 高中數學 > 題目詳情

已知數列{an}的前n項和Sn=n3,則a6+a7+a8+a9等于________.

604
分析:根據題意,分析可得a6+a7+a8+a9=S9-S5,代入前n項和Sn=n3,利用立方差公式可解.
解答:a6+a7+a8+a9=S9-S5
=93-53
=(9-5)×(92+9×5+52
=4×151=604.
故答案為:604.
點評:本題考查數列的性質和應用,把問題轉化為S9-S5是解決問題的關鍵,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}的前n項和Sn=n2(n∈N*),數列{bn}為等比數列,且滿足b1=a1,2b3=b4
(1)求數列{an},{bn}的通項公式;
(2)求數列{anbn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

13、已知數列{an}的前n項和為Sn=3n+a,若{an}為等比數列,則實數a的值為
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習冊答案