4.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在x∈[$-\frac{π}{6}$,$\frac{π}{3}$]上的最值.

分析 (Ⅰ)利用三角恒等變換,化簡函數(shù)f(x),求出f(x)的最小正周期;
(Ⅱ)根據(jù)x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求出2x+$\frac{π}{6}$的取值范圍,從而求出f(x)的取值范圍,即得f(x)的最值.

解答 解:(Ⅰ)函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1
=4cosx($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)-1
=$\sqrt{3}$sin2x+2cos2x-1
=$\sqrt{3}$sin2x+cos2x
=2sin(2x+$\frac{π}{6}$),
所以函數(shù)f(x)的最小正周期為
T=$\frac{2π}{2}$=π;
(Ⅱ)因為x∈[-$\frac{π}{6}$,$\frac{π}{3}$],
所以2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
所以sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
所以f(x)∈[-1,2],
即函數(shù)f(x)在x∈[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值為2,最小值為-1.

點評 本題考查了三角函數(shù)的化簡與求值的應用問題,也考查了數(shù)據(jù)函數(shù)的圖象與性質(zhì)的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.設g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則g(g($\frac{1}{3}$))=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.若n∈N+,且n≥2,求證:$\frac{1}{2}$-$\frac{1}{n+1}$<$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.2)-2×$\frac{2}{25}$-(0.081)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{x-1}{lg(x+1)}$的定義域為( 。
A.(-1,+∞)B.(-1,1)∪(1,+∞)C.(-1,0)∪(0,+∞)D.(-1,0)∪(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.$f(x)=|x|,g(x)=\sqrt{x^2}$B.f(x)=lgx2,g(x)=2lgx
C.$f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x-1$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖中甲、乙、丙所示,下面是三個幾何體的三視圖,相應的標號是( 。
①長方體 ②圓錐 ③三棱錐 ④圓柱.
A.②①③B.①②③C.③②④D.④③②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓的一個頂點為A1(0,-$\sqrt{2}$),焦點在x軸上.若右焦點到直線x-y+2$\sqrt{2}$=0的距離3
(1)求橢圓的標準方程;
(2)過點M(1,1)的直線與橢圓交于A、B兩點,且M點為線段AB的中點,求直線AB的方程及|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C的方程為:x2+y2-2x-4y+m=0.
(1)求m的取值范圍;
(2)若圓C與直線3x+4y-6=0交于M、N兩點,且|MN|=2$\sqrt{3}$,求m的值;
(3)設直線x-y-1=0與圓C交于A、B兩點,是否存在實數(shù)m,使得以AB為直徑的圓過原點,若存在,求出實數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案