9.函數(shù)y=sin2x的周期是π,函數(shù)y=sin(2x-$\frac{π}{6}$)的周期是π.

分析 由條件利用函數(shù)y=Asin(ωx+φ)的周期為 $\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)y=sin2x的周期是$\frac{2π}{2}$=π; 函數(shù)y=sin(2x-$\frac{π}{6}$)的周期是$\frac{2π}{2}$=π,
故答案為:π;π.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為 $\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$(lo{g}_{2}x)^{2}$-3log2x+2≤0,求函數(shù)y=4x-1-4•2x+2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.把平面中所有模為1的向量平移到同一起點(diǎn),則這些向量的終點(diǎn)構(gòu)成的圖形是單位圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2cos(ωx+$\frac{π}{6}$)(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè)α,β∈[0,$\frac{π}{2}$],f(5α+$\frac{5}{3}$π)=-$\frac{6}{5}$,f(5β-$\frac{5}{6}$π)=$\frac{16}{17}$,求sinα,cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x(x2-a)+$\frac{1}{x}$.
(1)證明:對(duì)任意a∈R,都有導(dǎo)函數(shù)f′(x)是偶函數(shù);
(2)若g(x)=f(x)-$\frac{1}{x}$-$\frac{1}{9}$lnx,且a<0,討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.時(shí)間經(jīng)過(guò)10小時(shí),時(shí)鐘轉(zhuǎn)過(guò)的角的弧度數(shù)是(  )
A.$\frac{5}{3}$πB.-$\frac{5}{3}$πC.$\frac{5}{6}$πD.-$\frac{5}{6}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)y=logax的圖象過(guò)點(diǎn)($\frac{1}{4}$,-2),則底a=( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,C=60°,a+b=16,則△ABC的周長(zhǎng)l的最小值是( 。
A.22B.23C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知數(shù)列{an}中,a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式為( 。
A.2n-1B.nC.${(\frac{n+1}{n})^{n-1}}$D.n2

查看答案和解析>>

同步練習(xí)冊(cè)答案