8.下面是2010年3月安徽省蕪湖樓市商品住宅板塊銷(xiāo)售對(duì)比餅狀圖,由圖可知,戈江區(qū)3月銷(xiāo)售套數(shù)為( 。
A.350B.340C.330D.306

分析 首先求出戈江區(qū)所占百分比,再與繁昌區(qū)對(duì)比,求出戈江區(qū)3月銷(xiāo)售套數(shù).

解答 解:戈江區(qū)所占百分比為:1-27%-8%-13%-35%=17%,234÷13%×17%=306,故選:D

點(diǎn)評(píng) 本題考查了扇形統(tǒng)計(jì)圖的應(yīng)用,從圖中獲取信息是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)y=2sin(2x+$\frac{π}{6}$)+2.
(1)當(dāng)函數(shù)y取得最大值時(shí),求自變量x的集合;
(2)該函數(shù)的圖象可由y=sin x(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,已知圓M的圓心在直線y=-2x上,且圓M與直線x+y-1=0相切于點(diǎn)P(2,-1).
(1)求圓M的方程;
(2)過(guò)坐標(biāo)原點(diǎn)O的直線l被圓M截得的弦長(zhǎng)為$\sqrt{6}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx-ax(a∈R)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)g(x)=f(x)-lnx+2ex,當(dāng)g(x)在[$\frac{1}{2}$,2]上存在零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若在區(qū)間[a,a+2]上,函數(shù)f(x)=2x-5的最小值不小于g(x)=4x-x2的最大值,則正數(shù)a的取值范圍為(  )
A.[3,+∞)B.(0,3)C.(3,+∞)D.[3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)P(1,-2),Q(-1,-1),O(0,0),點(diǎn)M(x,y)在不等式組$\left\{\begin{array}{l}{x+2y-1≥0}\\{2x+y-5≤0}\\{y≤x+2}\end{array}\right.$所表示的平面區(qū)域內(nèi),則|$\overrightarrow{OP}$+$\overrightarrow{OQ}$+$\overrightarrow{OM}$|的取值范圍是(  )
A.[$\frac{\sqrt{2}}{2}$,5]B.[$\frac{1}{2}$,5]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{5}$]D.[$\frac{1}{2}$,25]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)h(x)=$\left\{\begin{array}{l}{5-|x|(x≤5)}\\{(x-5)^{2}(x>5)}\end{array}\right.$,函數(shù)φ(x)=m-h(5-x),其中m∈R,若函數(shù):y=h(x)-φ(x)恰有4個(gè)零點(diǎn),則m的取值范圍是( 。
A.(5,+∞)∪{$\frac{19}{4}$}B.($\frac{19}{4}$,5)C.(0,4)D.(-∞,$\frac{19}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.直線6x+8y=b與圓x2+y2-2x-2y+1=0相切,則b的值是(  )
A.4或24B.4或-24C.-4或24D.-4或-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若a是集合{1,2,3,4,5,6,7}中任意選取的一個(gè)元素,則圓C:x2+(y-2)2=1與圓O:x2+y2=a2內(nèi)含的概率為$\frac{4}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案