【題目】已知定義[x]表示不超過(guò)的最大整數(shù),如[2]=2,[2,2]=2,執(zhí)行如圖所示的程序框圖,則輸出S=(
A.1991
B.2000
C.2007
D.2008

【答案】B
【解析】解:i=1,s=2017,i=2; s=2016,i=3;
s=2016,i=3;
s=2016,i=4,
s=2016,i=5;
s=2015,i=6;
s=2010,i=7;
s=2009,i=8;
s=2008,i=9;
s=2007,i=10;
s=2000,跳出循環(huán),輸出s=2000,
故選:B.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,集合

當(dāng)時(shí),求;

,不等式恒成立,求實(shí)數(shù)a的取值范圍;

若“”是“”的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上,且滿(mǎn)足.

(1)求證:;

(2)在棱上確定一點(diǎn),使、、四點(diǎn)共面,并求此時(shí)的長(zhǎng);

(3)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 對(duì)任意n∈N+ , Sn=(﹣1)nan+ +n﹣3且(t﹣an+1)(t﹣an)<0恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線(xiàn)為直線(xiàn)l.
(Ⅰ)求證:直線(xiàn)l⊥平面PAC;
(Ⅱ)直線(xiàn)l上是否存在點(diǎn)Q,使直線(xiàn)PQ分別與平面AEF、直線(xiàn)EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí), 取得極值,的值

(Ⅱ)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),時(shí),總有 成立,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過(guò)點(diǎn)M(1,4),曲線(xiàn)在點(diǎn)M處的切線(xiàn)恰好與直線(xiàn)x+9y﹣3=0垂直.

(1)求實(shí)數(shù)a、b的值

(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某社區(qū)居民有無(wú)收看“奧運(yùn)會(huì)開(kāi)幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進(jìn)行調(diào)查,若在60~70歲這個(gè)年齡段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC中,AC=3,BC=4,AB=5,A=4.

(1)證明:

(2)求二面角的余弦值大。

查看答案和解析>>

同步練習(xí)冊(cè)答案