【題目】(本題滿分14分)已知函數(shù)。
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值;
(2)若恒成立,求實數(shù)的取值范圍;
(3)證明:
【答案】(1)(2)(3)證明見解析
【解析】試題分析::利用導(dǎo)數(shù)的幾何意義求曲線在點處的切線方程,注意這個點的切點.(2)對于恒成立的問題,常用到以下兩個結(jié)論:(1),(2)
(3)證明不等式,注意應(yīng)用前幾問的結(jié)論.
試題解析:(1)函數(shù)的定義域為,
所以
又切線與直線垂直,
從而, 解得 ,
(2)若,則則在上是增函數(shù)
而不成立,故
若,則當(dāng)時, ;當(dāng)時, 所以在上是增函數(shù),在上是減函數(shù),
所以的最大值為
要使恒成立,只需,解得
(3)由(2)知,當(dāng)時,有在上恒成立,且在上是增函數(shù), 所以在上恒成立 .
令,則
令則有
以上各式兩邊分別相加,得
即故
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+2)-1(a>0,且a≠1),g(x)=x-1.
(1)若函數(shù)y=f(x)的圖象恒過定點A,求點A的坐標(biāo);
(2)若函數(shù)F(x)=f(x)-g(x)的圖象過點,試證明函數(shù)F(x)在x∈(1,2)上有唯一零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機變量越大,說明“與有關(guān)系”的可信度越大.
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.
③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中, ,則.
④如果兩個變量與之間不存在著線性關(guān)系,那么根據(jù)它們的一組數(shù)據(jù)不能寫出一個線性方程
正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xln x-(x-1)(ax-a+1)(a∈R).
(1)若a=0,判斷函數(shù)f(x)的單調(diào)性;
(2)若x>1時,f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在上的偶函數(shù),當(dāng)時,有,且當(dāng)時, ,給出下列命題:
①的值為;②函數(shù)在定義域上為周期是2的周期函數(shù);
③直線與函數(shù)的圖像有1個交點;④函數(shù)的值域為.
其中正確的命題序號有__________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) ,函數(shù)
(1)若 在 上單調(diào)遞增,求 的取值范圍;
(2)記 為 在 上的最大值,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是新兵訓(xùn)練時,某炮兵連8周中炮彈對同一目標(biāo)的命中情況的柱狀圖:
(1)計算該炮兵連這8周中總的命中頻率,并確定第幾周的命中頻率最高;
(2)以(1)中的作為該炮兵連炮兵甲對同一目標(biāo)的命中率,若每次發(fā)射相互獨立,且炮兵甲發(fā)射3次,記命中的次數(shù)為,求的數(shù)學(xué)期望;
(3)以(1)中的作為該炮兵連炮兵對同一目標(biāo)的命中率,試問至少要用多少枚這樣的炮彈同時對該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過?(取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點P(1,2)引直線,使A(2,3),B(4,-5)到它的距離相等,則這條直線的方程為 ( )
A. 4x+y-6=0
B. x+4y-6=0
C. 2x+3y-7=0或x+4y-6=0
D. 3x+2y-7=0或4x+y-6=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求函數(shù)的值的程序框圖如圖所示.
(1)指出程序框圖中的錯誤,并寫出算法;
(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.
①要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?
②要使輸出的值為8,輸入的x值應(yīng)是多少?
③要使輸出的y值最小,輸入的x值應(yīng)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com