【題目】已知函數(shù),
(1)寫出它的振幅、周期、初相;
(2)用“五點(diǎn)法”作出它在一個(gè)周期內(nèi)的圖象;
(3)說(shuō)明的圖象可由的圖象經(jīng)過(guò)怎樣的變換而得到。
【答案】(1)A=2,T=π,φ=;(2)見解析;(3) )見解析;
【解析】
(1)根據(jù)振幅,周期,初相的定義得到對(duì)應(yīng)的值;(2)設(shè)X=2x+,由X取0,,π,,2π來(lái)求出相應(yīng)的x,通過(guò)列表,計(jì)算得出五點(diǎn)坐標(biāo),描點(diǎn)后得出圖象;(3)根據(jù)左加右減的原則,以及伸縮變換得到圖像的變換.
(1)y=2sin的振幅A=2,
周期T==π,初相φ=.
(2)令X=2x+,則y=2sin=2sinX.
列表如下:
x | - |
|
|
|
|
X | 0 |
| π |
| 2π |
y=sinX | 0 | 1 | 0 | -1 | 0 |
y=2sin | 0 | 2 | 0 | -2 | 0 |
描點(diǎn)畫出圖象,如圖所示:
(3)把y=sinx的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,得到y(tǒng)=sin的圖象;
再把y=sin的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到y(tǒng)=sin的圖象;最后把y=sin上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變),即可得到y(tǒng)=2sin的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋時(shí)期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長(zhǎng)求三角形的面積的公式,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即,其中a、b、c分別為內(nèi)角A、B、C的對(duì)邊.若,,則面積S的最大值為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,,,,點(diǎn)是與的交點(diǎn),點(diǎn)在線段上,且.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)2017年的純利潤(rùn)為500萬(wàn)元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進(jìn)行技術(shù)改造,預(yù)測(cè)從2018年起每年比上一年純利潤(rùn)減少20萬(wàn)元,2018年初該企業(yè)一次性投入資金600萬(wàn)元進(jìn)行技術(shù)改造,預(yù)測(cè)在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤(rùn)為萬(wàn)元(為正整數(shù)).
(1)設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)為萬(wàn)元,進(jìn)行技術(shù)改造后的累計(jì)純利潤(rùn)為萬(wàn)元(須扣除技術(shù)改造資金),求,的表達(dá)式;
(2)依上述預(yù)測(cè),從2018年起該企業(yè)至少經(jīng)過(guò)多少年,進(jìn)行技術(shù)改造后的累計(jì)利潤(rùn)超過(guò)不進(jìn)行技術(shù)改造的累計(jì)純利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求的值及函數(shù)的極值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:
以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購(gòu)買2臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).
(Ⅰ)求的分布列;
(Ⅱ)若要求,確定的最小值;
(Ⅲ)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點(diǎn).
(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;
(Ⅱ)把直線與軸的交點(diǎn)記為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“節(jié)約用水”自古以來(lái)就是中華民族的優(yōu)良傳統(tǒng).某市統(tǒng)計(jì)局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設(shè)每天的用水量相互獨(dú)立.
(l)求在未來(lái)連續(xù)3個(gè)月里,有連續(xù)2個(gè)月的月用水量都不低于12噸且另1個(gè)月的月用水量低于4噸的概率;
(2)用表示在未來(lái)3個(gè)月里月用水量不低于12噸的月數(shù),求隨杌變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com