已知函數(shù)

(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;

(2)在(1)的條件下,若,,求的極小值;

(3)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且滿(mǎn)足,問(wèn):函數(shù)處的切線(xiàn)能否平行于軸?若能,求出該切線(xiàn)方程,若不能,請(qǐng)說(shuō)明理由.

解:(Ⅰ)

       由題意,知恒成立,即.          …… (2分)

       又,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

,所以.                               ……(4分)

(Ⅱ)由(Ⅰ)知,,則,則

(5分)

,得(舍去),

,

①若,則單調(diào)遞減;也單調(diào)遞減;

②若,則單調(diào)遞增.也單調(diào)遞增;

的極小值為                             ……(8分)

       (Ⅲ)設(shè)的切線(xiàn)平行于軸,其中

③④

 
結(jié)合題意,有                             ……(9分)

①—②得

所以由④得

所以⑤                                  ……(11分)

設(shè),⑤式變?yōu)?sub>

設(shè),

所以函數(shù)上單調(diào)遞增,

因此,,即

也就是,,此式與⑤矛盾.

所以處的切線(xiàn)不能平行于軸.              ……(14分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分12分)已知函數(shù),

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省岳陽(yáng)市高三第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù)

(1)若的極值點(diǎn),求實(shí)數(shù)的值;

(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,求函數(shù)的值;

(2)求函數(shù)的值域。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

已知函數(shù)

(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,求方程有兩個(gè)不相等實(shí)根的概率;

(2)若是從區(qū)間中任取的一個(gè)數(shù),是從區(qū)間中任取的一個(gè)數(shù),求方程沒(méi)有實(shí)根的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案