從4部甲型和5部乙型手機(jī)中任意取出3部,其中至少要有甲型與乙型手機(jī)各1部,則不同的取法共有( 。
A、35種B、70種
C、84種D、140種
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:本題既有分類計(jì)數(shù)原理也有分步計(jì)數(shù)原理.任意取出三部,其中至少要有甲型和乙型手機(jī)各1部,有兩種方法,問題得以解決.
解答: 解:甲型1部與乙型手機(jī)2部共有4•C52=40;
甲型2部與乙型手機(jī)1部共有C42•5=30;
不同的取法共有70種.
故選B.
點(diǎn)評:本題考查組合及組合數(shù)公式,考查分類討論思想,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一口袋中有3個(gè)白球和2個(gè)黑球,從中隨機(jī)依次取出兩球后,記袋中剩余的白球的個(gè)數(shù)為ξ,則ξ的方差Dξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個(gè)零點(diǎn),則a2+b2的最小值是(  )
A、1
B、2
C、10
D、
1
100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1
1+i3
(i是虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A、1-i
B、1+i
C、
1
2
+
1
2
i
D、
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x+4y=5與圓(x-1)2+(y+2)2=5的位置關(guān)系是( 。
A、外離B、外切C、相交D、內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx-
π
3
)(ω>0)的周期是π,將函數(shù)f(x)的圖象沿x軸向左平移
π
6
得到函數(shù)g(x)的圖象,則函數(shù)g(x)的解析式是(  )
A、g(x)=sin(
1
2
x-
π
4
B、g(x)=sin(2x-
π
6
C、g(x)=sin2x
D、g(x)=sin(2x-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6個(gè)人站成一排,其中甲、乙必須站在兩端,且丙、丁相鄰,則不同站法的種數(shù)為( 。
A、12B、18C、24D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是實(shí)數(shù),若(1+i)(3-ai)是純虛數(shù),則a=( 。
A、-1B、1C、-3D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xex(e為自然對數(shù)的底數(shù))
(1)求函數(shù)在x=1處的切線方程;  
(2)若任意x∈R,f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案