如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB則下列結論正確的是( )
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直線BC∥平面PAE
D.直線PD與平面ABC所成的角為45°
【答案】分析:利用題中條件,逐一分析答案,通過排除和篩選,得到正確答案.
解答:解:∵AD與PB在平面的射影AB不垂直,
所以A不成立,又,平面PAB⊥平面PAE,
所以平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,
∴直線BC∥平面PAE也不成立.
在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,
故選D.
點評:本題考查直線與平面成的角、直線與平面垂直的性質(zhì).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

9、如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB則下列結論正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論中:
①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有
①④
(把所有正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,給出下列結論:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°;⑤直線PD與平面PAB所成角的余弦值為
10
4
.其中正確的有
①④⑤
①④⑤
(把所有正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結論不正確的序號是

①CD∥平面PAF
②DF⊥平面PAF
③CF∥平面PAB
④CF⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學直線、平面、簡單幾何體專項訓練(河北) 題型:填空題

如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論中:

①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.

其中正確的有________(把所有正確的序號都填上)

 

查看答案和解析>>

同步練習冊答案