已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A,B兩點(diǎn).
(Ⅰ)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若,求直線l的方程;
(Ⅲ)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長(zhǎng)軸長(zhǎng)的最小值.
【答案】分析:(Ⅰ)拋物線C2有公共焦點(diǎn)F(1,0),可知該拋物線的標(biāo)準(zhǔn)方程的形式和P的值,代入即可;
(Ⅱ)設(shè)出直線l的方程為y=k(x-4),聯(lián)立方程,消去x,得到關(guān)于y的一元二次方程,設(shè)A(x1,y1),B(x2,y2),利用韋達(dá)定理和△>0及,消去y1,y2,可求得斜率k的值;
(Ⅲ)設(shè)P(m,n),則OP中點(diǎn)為,因?yàn)镺、P兩點(diǎn)關(guān)于直線y=k(x-4)對(duì)稱,利用對(duì)稱的性質(zhì)(垂直求平方),可求得斜率k的值,聯(lián)立直線與橢圓方程,消去y,得到關(guān)于x的一元二次方程,△≥0,解不等式即可橢圓C1的長(zhǎng)軸長(zhǎng)的最小值.
解答:解:(Ⅰ)∵拋物線C2的焦點(diǎn)F(1,0),
=1,即p=2
∴拋物線C2的方程為:y2=4x,
(Ⅱ)設(shè)直線AB的方程為:y=k(x-4),(k存在且k≠0).
聯(lián)立,消去x,得ky2-4y-16k=0,
顯然△=16+64k2>0,設(shè)A(x1,y1),B(x2,y2),
    ①y1•y2=-16          ②
,所以         ③
由①②③消去y1,y2,得k2=2,
故直線l的方程為,或
(Ⅲ)設(shè)P(m,n),則OP中點(diǎn)為,因?yàn)镺、P兩點(diǎn)關(guān)于直線y=k(x-4)對(duì)稱,
所以,即,解之得
將其代入拋物線方程,得:,所以,k2=1.
聯(lián)立,消去y,得:(b2+a2k2)x2-8k2a2x+16a2k2-a2b2=0.
由△=(-8k2a22-4(b2+a2k2)(16a2k2-a2b2)≥0,
得16a2k4-(b2+a2k2)(16k2-b2)≥0,
即a2k2+b2≥16k2
將k2=1,b2=a2-1代入上式并化簡(jiǎn),得2a2≥17,所以,即,
因此,橢圓C1長(zhǎng)軸長(zhǎng)的最小值為
點(diǎn)評(píng):此題是個(gè)難題.本題考查了橢圓與拋物線的標(biāo)準(zhǔn)方程、直線與圓錐曲線的位置關(guān)系,是一道綜合性的試題,考查了學(xué)生綜合運(yùn)用知識(shí)解決問(wèn)題的能力.其中問(wèn)題(Ⅲ)考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問(wèn)題、解決問(wèn)題的能力,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A,B兩點(diǎn).
(Ⅰ)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若
AM
=
1
2
MB
,求直線l的方程;
(Ⅲ)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門二模)已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),直線l過(guò)點(diǎn)M(4,0).
(1)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(2)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1C的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

        已知橢圓C1和拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從它們每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:   

x

5

4

y

2

0

-4

 

(Ⅰ)求C1和C2的方程;

   (Ⅱ)過(guò)點(diǎn)S(0,-)且斜率為k的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以線段AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省江門、佛山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),直線l過(guò)點(diǎn)M(4,0).
(1)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(2)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1C的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A,B兩點(diǎn).
(Ⅰ)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若,求直線l的方程;
(Ⅲ)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案