已知函數(shù)f(x)=
1
3
ax3-
1
2
(a+1)x2+bx(a,b∈R,a≠1,a>0)
在x=1時取得極值.
(1)求b的值;
(2)求f(x)的單調減區(qū)間.
考點:利用導數(shù)研究函數(shù)的極值,利用導數(shù)研究函數(shù)的單調性
專題:導數(shù)的概念及應用
分析:(1)依題意,得f′(x)=ax2-(a+1)x+b由于x=1為函數(shù)的一個極值點,則f′(1)=0,得b=1.
(2)由(1)得;f′(x)=ax2-(a+1)x+1,①當0<a<1時,1<
1
a
,②當a>1時,
1
a
<1
,令f′(x)<0,解不等式求出即可.
解答: 解:(1)依題意,得f′(x)=ax2-(a+1)x+b
由于x=1為函數(shù)的一個極值點,
則f′(1)=0,
解得b=1.
(2)由(1)得;f′(x)=ax2-(a+1)x+1,
①當0<a<1時,1<
1
a

令f′(x)<0,
∴不等式的解集為1<x<
1
a
;  
②當a>1時,
1
a
<1

令f′(x)<0,
∴不等式的解集為
1
a
<x<1
;      
綜上,當0<a<1時,f(x)的單調減區(qū)間為(1,
1
a
);
當a>1時,f(x)的單調減區(qū)間為(
1
a
,1).
點評:本題考察了函數(shù)的單調性,導數(shù)的應用,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在某校組織的一次籃球定點投籃測試中,規(guī)定每人最多投3次,每次投籃的結果相互獨立.在A處每投進一球得3分,在B處每投進一球得2分,否則得0分.將學生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認為通過測試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投;方案2:都在B處投籃.甲同學在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(Ⅰ)甲同學選擇方案1.求甲同學測試結束后所得總分等于4的概率;求甲同學測試結束后所得總分ξ的分布列和數(shù)學期望Eξ;
(Ⅱ)你認為甲同學選擇哪種方案通過測試的可能性更大?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知DA⊥平面ABC,AC⊥CB,AC=CB=AD=2,E是DC的中點,F(xiàn)是AB的中點.
(1)證明AC⊥EF;
(2)求二面角C-DB-A的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

宇宙深處有一顆美麗的行星,這個行星是一個半徑為r(r>0)的球.人們在行星表面建立了與地球表面同樣的經緯度系統(tǒng).已知行星表面上的A點落在北緯60°,東經30°;B點落在東經30°的赤道上;C點落在北緯60°,東經90°.在赤道上有點P滿足PB兩點間的球面距離等于AB兩點間的球面距離.
(1)求AC兩點間的球面距離;
(2)求P點的經度;
(3)求AP兩點間的球面距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B,C是圓O上三個點,AD是∠BAC的平分線,交圓O于D,過B做直線BE交AD延長線于E,使BD平分∠EBC.
(1)求證:BE是圓O的切線;
(2)若AE=6,AB=4,BD=3,求DE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,側面PAB是正三角形,AB=2,BC=
2
,PC=
6

(Ⅰ)求證:平面PAB⊥平面ABCD;
(Ⅱ)已知棱PA上有一點E.
(。┤舳娼荅-BD-A的大小為45°,求AE:EP的值;
(ⅱ)若Q為四棱錐P-ABCD內部或表面上的一動點,且EQ∥平面PDC,請你判斷滿足條件的所有的Q點組成的幾何圖形(或幾何體)是怎樣的幾
何圖形(或幾何體).(只需寫出結果即可,不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=2n+c(n∈N*),其中c是常數(shù).
(1)若數(shù)列{an}為等比數(shù)列,求常數(shù)c的值;
(2)若c=2,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-bx(b為常數(shù)).
(Ⅰ)求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)設h(x)=f(x)+g(x),若函數(shù)h(x)在定義域上存在單調減區(qū)間,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,∠CDA=∠DAB=90°,PD⊥底面ABCD,PD=AD,CD=1,AB=2,E是PB中點,點E在平面ACP上的射影是△ACP
的重心G.
(1)求PB與平面ACP所成角的正弦值;
(2)求二面角B-AC-E的平面角的正弦值.

查看答案和解析>>

同步練習冊答案