15.已知數(shù)列{an}滿足a1=1,a2=2,且$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}}$(n≥2),則數(shù)列{an}的前4項(xiàng)和等于( 。
A.18B.8C.15D.17

分析 由已知條件利用遞推公式先求出a3,a4,由此能求出數(shù)列{an}的前4項(xiàng)和.

解答 解:∵數(shù)列{an}滿足a1=1,a2=2,且$\frac{{a}_{n-1}-{a}_{n}}{{a}_{n-1}}$=$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}}$(n≥2),
∴$\frac{{a}_{1}-{a}_{2}}{{a}_{1}}=\frac{{a}_{2}-{a}_{3}}{{a}_{2}}$,即$\frac{1-2}{1}=\frac{2-{a}_{3}}{2}$,
解得a3=4,
$\frac{{a}_{2}-{a}_{3}}{{a}_{2}}=\frac{{a}_{3}-{a}_{4}}{{a}_{3}}$,即$\frac{2-4}{2}=\frac{4-{a}_{4}}{4}$,
解得a4=8,
數(shù)列{an}的前4項(xiàng)和S4=1+2+4+8=15.
故選:C.

點(diǎn)評(píng) 本題考查數(shù)列的前4項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意遞推公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點(diǎn)P(5a+1,12a)在圓(x-1)2+y2=1的內(nèi)部,則a的取值范圍是(  )
A.(-1,1)B.[-∞,$\frac{1}{13}$]C.[-$\frac{1}{13}$,$\frac{1}{13}$]D.[-$\frac{1}{5}$,$\frac{1}{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求到定點(diǎn)F(c,0)(c>0)和它到定直線l:x=$\frac{{c}^{2}}{a}$距離之比是$\frac{c}{a}$($\frac{c}{a}$>1)的點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知圓錐高為H,底面半徑為R,則它的內(nèi)接圓柱的高為x,則這個(gè)內(nèi)接圓柱的側(cè)面積為-$\frac{2πR}{H}$(x-$\frac{H}{2}$)2+$\frac{πRH}{2}$,當(dāng)x=$\frac{H}{2}$時(shí),內(nèi)接圓柱的側(cè)面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.化簡:cos(15°-α)cos15°-sin(165°+α)•sin(-15°)=cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,AA′是長方體的一條棱,長方體中與AA′平行的棱共有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系中畫出下列二元一次不等式組的解所表示的區(qū)域;
(1)$\left\{\begin{array}{l}{x≤2}\\{y<2x-3}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{y≥0}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{-1≤x≤5}\\{-2≤y≤3}\\{x+y≤6}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)x>1,y>1,且滿足log7(x+y)=log7x+log7y,則log7(x-1)+log7(y-1)的值等于( 。
A.7B.1C.log72D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,直線L與拋物線y2=4x相交于不同的A、B兩點(diǎn).且$\overrightarrow{OA}$•$\overrightarrow{OB}$=-4.
(1)證明直線L必過一定點(diǎn),并求出該定點(diǎn).
(2)求線段AB的中點(diǎn)P的軌跡方程.
(3)求三角形AOB面積最小時(shí),直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案