分析 (1)利用待定系數(shù)法,求出圓的圓心與半徑即可得到圓的標準方程.
(2)求出對稱直線的方程與拋物線聯(lián)立方程組,利用相切求解即可.
解答 解:(1)設(shè)M的方程為x2+(y-b)2=r2,
(1,1)代入,可得1+(1-b)2=r2,①
∵直線l與圓M相切,∴$\frac{|-b-2|}{\sqrt{5}}$=r,②
由①②可得b=3或$\frac{1}{2}$,
∴M的方程為x2+(y-3)2=5,或x2+(y-$\frac{1}{2}$)2=$\frac{5}{4}$,
(2)因為直線l的方程為y=2x+n
所以直線l′的方程為y=-2x+n.
與拋物線聯(lián)立得x2+12x-6n=0.
△=144+24n
①當n=-6,即△=0時,直線l′與拋物線C相切;,切點坐標為(-6,6)
②當n≠-6,即△≠0時,直線l′與拋物線C不相切.
點評 本題考查直線與拋物線的位置關(guān)系,圓的方程的求法,以及對稱知識的應用,考查分析問題解決問題的能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x=2,x=3} | B. | {(2,3)} | C. | {2,3} | D. | 2,3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com