已知f(x)=
(x-2)2
x
+m-6
為定義域上的奇函數(shù)(其中m為常數(shù)),
(Ⅰ)試求出實(shí)數(shù)m的值和f(x)解析式;
(Ⅱ)若函數(shù)g(x)=2ax-22(其中a>0,a≠1)在[-2,2]上的最大值為m,試求實(shí)數(shù)a的值.
(Ⅰ)函數(shù)f(x)的定義域?yàn)閧x∈R|x≠0},
f(x)=
x2-4x+4
x
+m-6=x+
4
x
+m-10

對(duì)任意x∈{x∈R|x≠0},由奇函數(shù)性質(zhì),有f(-x)+f(x)=0恒成立
所以,(-x+
4
-x
+m-10)+x+
4
x
+m-10=0
即2m-20=0恒成立,
∴m=10,f(x)=x+
4
x

(Ⅱ)函數(shù)g(x)=2ax-22(其中a>0,a≠1)在[-2,2]上的最大值為10,
當(dāng)a>1時(shí),ax為R上單調(diào)遞增函數(shù),g(x)=2ax-22在[-2,2]上單調(diào)遞增,g(x)最大=g(2)=10
即:2a2-22=10,即a2=16,從而,a=4
當(dāng)0<a<1時(shí),ax為R上單調(diào)遞減函數(shù),g(x)=2ax-22在[-2,2]上單調(diào)遞減,g(x)最大=g(-2)=10
即:2a-2-22=10,即a-2=16,從而,a=
1
4

綜上,實(shí)數(shù)a的值為4或
1
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2時(shí),求f(x)的值域;
(2) b≥2時(shí),f(x)的最大值為M,最小值為m,且滿足:M-m≥4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,則下列結(jié)論中正確的是( 。
A、函數(shù)y=f(x)•g(x)的最大值為1
B、函數(shù)y=f(x)•g(x)的對(duì)稱中心是(
2
+
π
4
,0),k∈Z
C、當(dāng)x∈[-
π
2
,
π
2
]
時(shí),函數(shù)y=f(x)•g(x)單調(diào)遞增
D、將f(x)的圖象向右平移
π
2
單位后得g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,則下列函數(shù)的圖象錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學(xué)公式,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學(xué)公式上的值域?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/769.png' />,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問(wèn)是否存在實(shí)數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023214609557716869/SYS201310232146095577168019_ST/2.png">,若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案