(2014•金山區(qū)一模)設(shè)x∈R,則“|x-1|>1”是“x>3”的( 。
分析:由判斷充要條件的方法,由于|x-1|>1?x>2或x<0,而{x|x>3}?{x|x>2或x<0},結(jié)合集合關(guān)系的性質(zhì),不難得到正確結(jié)論.
解答:解:由|x-1|>1,得到x>2或x<0,
由于{x|x>3}?{x|x>2或x<0},則“|x-1|>1”是“x>3”的必要不充分條件.
故答案選B.
點(diǎn)評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2014•金山區(qū)一模)定義:對函數(shù)y=f(x),對給定的正整數(shù)k,若在其定義域內(nèi)存在實(shí)數(shù)x0,使得f(x0+k)=f(x0)+f(k),則稱函數(shù)f(x)為“k性質(zhì)函數(shù)”.
(1)若函數(shù)f(x)=2x為“1性質(zhì)函數(shù)”,求x0;
(2)判斷函數(shù)f(x)=
1
x
是否為“k性質(zhì)函數(shù)”?說明理由;
(3)若函數(shù)f(x)=lg
a
x2+1
為“2性質(zhì)函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案