已知直線l與橢圓C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積S△OPQ=
6
2
,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說明理由.
分析:(Ⅰ)根據(jù)已知設(shè)出直線l的方程,利用弦長(zhǎng)公式求出|PQ|的長(zhǎng),利用點(diǎn)到直線的距離公式求點(diǎn)O到直線l的距離,根據(jù)三角形面積公式,即可求得x12+x22和y12+y22均為定值;
(Ⅱ)由(I)可求線段PQ的中點(diǎn)為M,代入|OM|•|PQ|并利用基本不等式求最值;(Ⅲ)假設(shè)存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=
6
2

由(Ⅰ)得u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2,從而求得點(diǎn)D,E,G,的坐標(biāo),可以求出直線DE、DG、EG的方程,從而得到結(jié)論.
解答:解:(Ⅰ)1°當(dāng)直線l的斜率不存在時(shí),P,Q兩點(diǎn)關(guān)于x軸對(duì)稱,
所以x1=x2,y1=-y2,
∵P(x1,y1)在橢圓上,
x12
3
+
y12
2
=1
     ①
又∵S△OPQ=
6
2

∴|x1||y1|=
6
2
      ②
由①②得|x1|=
6
2
,|y1|=1.此時(shí)x12+x22=3,y12+y22=2;
2°當(dāng)直線l的斜率存在時(shí),是直線l的方程為y=kx+m(m≠0),將其代入
x2
3
+
y2
2
=1

(3k2+2)x2+6kmx+3(m2-2)=0,△=36k2m2-12(3k2+2)(m2-2)>0
即3k2+2>m2,
又x1+x2=-
6km
3k2+2
,x1•x2=
3(m2- 2)
3k2+2
,
∴|PQ|=
1+k2
(x1+x2)2-4x1x2
=
1+k2
2
6
3k2+2-m2
3k2+2

∵點(diǎn)O到直線l的距離為d=
|m|
1+k2
,
∴S△OPQ=
1
2
1+k2
2
6
3k2+2-m2
3k2+2
|m|
1+k2
=
6
3k2+2-m2
|m|
3k2+2
,
又S△OPQ=
6
2
,
整理得3k2+2=2m2,此時(shí)x12+x22=(x1+x22-2x1x2=(-
6km
3k2+2
2-2
3(m2- 2)
3k2+2
=3,
y12+y22=
2
3
(3-x12)+
2
3
(3-x22)=4-
2
3
(x12+x22)=2;
綜上所述x12+x22=3,y12+y22=2.結(jié)論成立.

(Ⅱ)1°當(dāng)直線l的斜率不存在時(shí),由(Ⅰ)知
|OM|=|x1|=
6
2
,|PQ|=2|y1|=2,
因此|OM|•|PQ|=
6

2°當(dāng)直線l的斜率存在時(shí),由(Ⅰ)知 
x1+x2
2
=-
3k
2m
y1+y2
2
=k
x1+x2
2
+m=
-3k2+2m2
2m
=
1
m

|OM|2=(
x1+x2
2
2+(
y1+y2
2
2=
9k2
4m2
+
1
m2
=
6m2-2
4m2
=
1
2
(3-
1
m2
)
,
|PQ|2=(1+k2
24(3k2+2-m2)
2+3k2)2 
=
2(2m2-1)
m2
=2(2+
1
m2
),
所以|OM|2|PQ|2=
1
2
(3-
1
m2
)
×2×(2+
1
m2
)
=(3-
1
m2
)(2+
1
m2


≤ (
3-
1
m2
+ 2+
1
m2
2
)
2
=
25
4

|OM|•|PQ|
5
2
.當(dāng)且僅當(dāng)3-
1
m2
=2+
1
m2
,
即m=±
2
時(shí),等號(hào)成立.
綜合1°2°得|OM|•|PQ|的最大值為
5
2
;

(Ⅲ)橢圓C上不存在三點(diǎn)D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
,
證明:假設(shè)存在D(u,v),E(x1,y1),G(x2,y2),使得S△ODE=S△ODG=S△OEG=
6
2

由(Ⅰ)得
u2+x12=3,u2+x22=3,x12+x22=3;v2+y12=2,v2+y22=2,y12+y22=2
解得u2=x12=x22=
3
2
;v2=y12=y22=1.
因此u,x1,x2只能從±
6
2
中選取,
v,y1,y2只能從±1中選取,
因此點(diǎn)D,E,G,只能在(±
6
2
,±1)這四點(diǎn)中選取三個(gè)不同點(diǎn),
而這三點(diǎn)的兩兩連線中必有一條過原點(diǎn),與S△ODE=S△ODG=S△OEG=
6
2
矛盾.
所以橢圓C上不存在滿足條件的三點(diǎn)D,E,G.
點(diǎn)評(píng):此題是個(gè)難題.本題考查了直線與橢圓的位置關(guān)系,弦長(zhǎng)公式和點(diǎn)到直線的距離公式,是一道綜合性的試題,考查了學(xué)生綜合運(yùn)用知識(shí)解決問題的能力.其中問題(III)是一個(gè)開放性問題,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)M(
6
,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)已知直線l與橢圓C交于不同的兩點(diǎn)A、B,若直線l是圓O:x2+y2=
8
3
的一條切線,試證明∠AOB=
π
2
.它的逆命題成立嗎?若成立,請(qǐng)給出證明;否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
過點(diǎn)M(
6
,1)
,O為坐標(biāo)原點(diǎn)
(1)求橢圓方程
(2)已知直線l與橢圓C交于不同的兩點(diǎn)A,B,若直線l是圓O:x2+y2=
8
3
的一條切線,求證:∠AOB=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年吉林省高考數(shù)學(xué)仿真模擬試卷3(理科)(解析版) 題型:解答題

已知離心率為的橢圓C:+=1(a>b>0)過點(diǎn)M(,1),O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)已知直線l與橢圓C交于不同的兩點(diǎn)A、B,若直線l是圓O:x2+y2=的一條切線,試證明∠AOB=.它的逆命題成立嗎?若成立,請(qǐng)給出證明;否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知直線l與橢圓C:交于P(x1,y1),Q(x2,y2)兩不同點(diǎn),且△OPQ的面積S△OPQ=,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點(diǎn)為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點(diǎn)D,E,G,使得S△ODE=S△ODG=S△OEG=?若存在,判斷△DEG的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案