已知圓錐的底面直徑AB=2a,母線SA=3a,在母線SB上任取一點(diǎn)C,當(dāng)C在什么位置時,圓錐側(cè)面上從A到C的距離最短;并求出這個距離.
考點(diǎn):多面體和旋轉(zhuǎn)體表面上的最短距離問題
專題:計算題,空間位置關(guān)系與距離
分析:利用側(cè)面展開圖,求出∠ASB,即可得出結(jié)論.
解答: 解:如圖所示,設(shè)∠ASB=α,則
πa=α•3a,∴α=
π
3
,
∴AC=3a•sin
π
3
=
3
3
2
a

SC=
3a
2

∴C在距離S點(diǎn)
3a
2
處,最短距離為
3
3
2
a
點(diǎn)評:本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sin(2014π)=(  )
A、-1
B、1
C、
3
2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
3
ex3+
1
2
x2+
2
e
x,g(x)=f(x)-
2
e
x+ex(x-1),函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),其中e=2.71828…為自然對數(shù)的底數(shù).
(Ⅰ)求f(x)的極值;
(Ⅱ)求g(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)x>0時,求證:g′(x)≥1+lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x(ex-1)-ax2(e=2071828…是自然對數(shù)的底數(shù)).
(I)若a=
1
2
,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)x≥0時f(x)≥0,求a的取值范圍;
(Ⅲ)設(shè)n∈N*,x>0,求證:ex>1+
x
1!
+
x2
2!
+…+
xn
n!
n!=n×(n-1)×…×2×1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2-m2x+1(m為常數(shù),且m>0),當(dāng)x=-2時有極大值.
(1)求m的值;
(2)若曲線y=f(x)有斜率為-5的切線,求此切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)均在⊙C上,
(1)求⊙C的方程;
(2)若⊙C與直線x-y+a=0交于A、B兩點(diǎn)且OA⊥OB,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1,x2滿足0<x1<x2
1
a

(1)a=
1
2
,b=0,c=
3
8
,求x12+x22的值
(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明:x0
x1
2

(3)當(dāng)x∈(0,x1)時,證明x<f(x)<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=loga(1-x),h(x)=loga(x+3)(0<a<1).
(1)設(shè)f(x)=g(x)+h(x),若函數(shù)f(x)的最小值是-2,求a的值;
(2)設(shè)F(x)=g(x)-h(x),用定義證明函數(shù)F(x)在定義域上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù).
單位x(元)88.28.48.68.89
銷量y(件)908483807568
(1)若y與x的線性關(guān)系為:
y
=-20x+a,求a.
(2)預(yù)計在今后的銷售中,銷量y與單價仍然服從(1)中的有關(guān)系,且該產(chǎn)品的成本為4元/件,為了使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊答案