已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(Ⅰ) ,或 (Ⅱ)
(Ⅰ)解:依題意,直線的斜率存在,設(shè)直線的方程為,
將代入, 消去整理得 ………….. 2分
設(shè) 則 ………….. 4分
由線段中點(diǎn)的橫坐標(biāo)是, 得,解得,適合. ….. 5分
所以直線的方程為 ,或 . ….. 6分
(Ⅱ)解:假設(shè)在軸上存在點(diǎn),使為常數(shù).
① 當(dāng)直線與軸不垂直時(shí),由(Ⅰ)知
所以
………….. 8分
將代入,整理得
注意到是與無關(guān)的常數(shù), 從而有, 此時(shí) .. 10分
② 當(dāng)直線與軸垂直時(shí),此時(shí)點(diǎn)的坐標(biāo)分別為,
當(dāng)時(shí), 亦有
綜上,在軸上存在定點(diǎn),使為常數(shù). ……………….. 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年西城區(qū)抽樣測試?yán)恚?4分)
已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年陜西省普通高等學(xué)校第四次適應(yīng)性訓(xùn)練(理) 題型:解答題
已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與該橢圓相交于兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com