已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線經(jīng)過(guò)、兩點(diǎn)
(1)求雙曲線的方程;
(2)設(shè)直線交雙曲線兩點(diǎn),且線段被圓三等分,求實(shí)數(shù)的值

(1);(2) 

解析試題分析:(1)求雙曲線的方程,可設(shè)雙曲線的方程是,利用待定系數(shù)法求出的值即可,由雙曲線經(jīng)過(guò)兩點(diǎn),將代入上面方程得,,解方程組,求出的值,即可求出雙曲線的方程;(2)求實(shí)數(shù)、的值,直線交雙曲線、兩點(diǎn),且線段被圓三等分,可知圓心與的中點(diǎn)垂直,設(shè)的中點(diǎn),則,而圓心,因此只需找出的中點(diǎn)的關(guān)系,可將代人,得,設(shè),利用根與系數(shù)關(guān)系及中點(diǎn)坐標(biāo)公式得,這樣可求得的值,由的值可求出的長(zhǎng),從而得圓的弦長(zhǎng),利用勾股定理可求得的值
試題解析:(1)設(shè)雙曲線的方程是,依題意有   2分
解得   3分 所以所求雙曲線的方程是      4分
(2)將代人,得 (*)
               6分
設(shè)的中點(diǎn),則
,                   7分
,       8分
又圓心,依題意,故,即     9分
代人(*)得,解得
                   10分
故直線截圓所得弦長(zhǎng)為,又到直線的距離  11分
所以圓的半徑
所以圓的方程是        

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q,設(shè)點(diǎn)MPQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過(guò)點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓C=1(a>b>0)的離心率e,右焦點(diǎn)到直線=1的距離d,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點(diǎn),證明,點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線,點(diǎn),過(guò)的直線交拋物線兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)等于,求直線的斜率;
(2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,左、右兩個(gè)焦點(diǎn)分別為,上頂點(diǎn),為正三角形且周長(zhǎng)為6,直線與橢圓相交于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說(shuō)明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點(diǎn)為,求弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)、的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知是橢圓的右焦點(diǎn);圓軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

(1)求橢圓的離心率;
(2)設(shè)圓軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案