f(x)=
1
2
x2-lnx.
①求函數(shù)f(x)的值域;
②討論方程
1
2
x2-lnx=m的根的個(gè)數(shù).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的概念及應(yīng)用
分析:①先求函數(shù)的定義域,對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,從而求出函數(shù)的最值及值域.
②方程
1
2
x2-lnx=m的根的個(gè)數(shù)就是函數(shù)f(x)=
1
2
x2-lnx圖象與直線y=m交點(diǎn)個(gè)數(shù).利用數(shù)形結(jié)合的方法求解.
解答: 解:①函數(shù)的定義域(0,+∞),
f′(x)=x-
1
x
=
(x+1)(x-1)
x
,令f′(x)≥0得x≥1; f′(x)≤0得0<x≤1,
所以函數(shù)在(0,1]單調(diào)遞減,在[1,+∞)上單調(diào)遞增,
所以函數(shù)在x=1時(shí)取得最小值,f(x)min=f(1)=
1
2

②方程
1
2
x2-lnx=m的根的個(gè)數(shù)就是函數(shù)f(x)=
1
2
x2-lnx圖象與直線y=m交點(diǎn)個(gè)數(shù).
當(dāng)m
1
2
時(shí),兩圖象無交點(diǎn),方程
1
2
x2-lnx=m的根的個(gè)數(shù)為0,
當(dāng)m=
1
2
時(shí),兩圖象一個(gè)交點(diǎn),方程
1
2
x2-lnx=m的根的個(gè)數(shù)為1,
當(dāng)m>
1
2
時(shí),兩圖象兩個(gè)交點(diǎn),方程
1
2
x2-lnx=m的根的個(gè)數(shù)為2.
點(diǎn)評(píng):本題考查函數(shù)值域求解,體現(xiàn)了導(dǎo)數(shù)的工具作用,應(yīng)用數(shù)形結(jié)合思想方法研究了方程根的個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|x-2|
(Ⅰ)若f(x)≥m恒成立,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若不等式||a+b|-|a-b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求實(shí)數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),|
a
-
b
|=
2
5
5

(1)求cos(α-β)的值;
(2)若0<α<
π
2
,-
π
2
<β<0,且sinβ=-
5
13
,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,0),B(1,0),動(dòng)點(diǎn)M滿足|MA|+|MB|=4,記動(dòng)點(diǎn)M的軌跡為曲線C
(1)求曲線C的方程;
(2)若點(diǎn)P在曲線C上,且滿足
PA
PB
=t,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,函數(shù)f(x)=ax2+
b
x
(x∈R,x≠0)在x=1時(shí)有極小值
3
2

(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正三棱柱ABC-A′B′C′棱長均為2,點(diǎn)D在側(cè)棱BB′上.
(Ⅰ)求AD+DC′的最小值;
(Ⅱ)當(dāng)AD+DC′取最小值時(shí),求面ADC′和面ABB′A′所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:f(x)=
1
2
x2-(a2+2)x+(a2+1)lnx,(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求f(x)的極大值與極小值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某部門為了了解用電量y(單位:度)與氣溫x(單位:℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,因某天統(tǒng)計(jì)的用電量數(shù)據(jù)丟失,用t表示,如下表:
氣溫(℃)181310-1
用電量(度)24t3864
(1)由以上數(shù)據(jù),求這4天氣溫的標(biāo)準(zhǔn)差(結(jié)果用根式表示).
(2)若用電量與氣溫之間具有較好的線性相關(guān)關(guān)系,回歸直線方程為
y
=-2x+b,且預(yù)測(cè)氣溫為-4℃時(shí),用電量為2t度.求t、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y),A(-1,0),向量
PA
與向量
m
=(1,1)共線.
(1)求y關(guān)于x的函數(shù);
(2)已知點(diǎn)B(1,2),請(qǐng)?jiān)谥本y=3x上找一點(diǎn)C,使得
PB
PC
>0時(shí)x的取值集合為{x|x<-1或x>1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案