精英家教網 > 高中數學 > 題目詳情

過拋物線y2=4x的焦點作傾斜角為45°的弦AB,O為坐標原點,則△OAB的面積為


  1. A.
    2
  2. B.
    4
  3. C.
    數學公式
  4. D.
    數學公式
C
分析:設A(x1,y1),B(x2,y2),則S=|OF|•|y1-y2|.直線為x+y-1=0,即x=1-y代入y2=4x得:y2=4(1-y),由此能求出△OAB的面積.
解答:設A(x1,y1),B(x2,y2),則S=|OF|•|y1-y2|.
直線為x+y-1=0,即x=1-y代入y2=4x得:
y2=4(1-y),即y2+4y-4=0,∴y1+y2=-4,y1y2=-4,
∴|y1-y2|===4
∴S=|OF|•|y1-y2|=×4 =2
故選C.
點評:本題主要考查了拋物線的簡單性質,直線與拋物線的位置關系.在涉及焦點弦的問題時常需要把直線與拋物線方程聯立利用韋達定理設而不求,進而利用拋物線的定義求得問題的答案.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=( 。
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標原點,若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數學 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準線l上的射影分別為M.N,則∠MFN=( 。

查看答案和解析>>

同步練習冊答案