分析 求出圓心與A的距離|CA|=$\sqrt{(-1-3)^{2}+(0-4)^{2}}$=4$\sqrt{2}$,圓的半徑為1,即可得出結(jié)論.
解答 解:圓心與A的距離|CA|=$\sqrt{(-1-3)^{2}+(0-4)^{2}}$=4$\sqrt{2}$,圓的半徑為1,
則d=|PA|2的最大值為(4$\sqrt{2}$+1)2=33+8$\sqrt{2}$,最小值為(4$\sqrt{2}$-1)2=33-8$\sqrt{2}$,
故答案為33+8$\sqrt{2}$;33-8$\sqrt{2}$.
點(diǎn)評(píng) 本題考查點(diǎn)與圓的位置關(guān)系,考查距離的計(jì)算,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1<k<$\frac{\sqrt{5}}{2}$ | B. | -$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$ | C. | -$\frac{\sqrt{5}}{2}$<k<-1 | D. | -$\frac{\sqrt{5}}{2}$<k<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1或3 | B. | 1或3 | C. | -1 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com