求函數(shù)y=-tan2x+10tanx-1,x∈[
π
4
,
π
3
]的最值及相應(yīng)x的值.
考點:三角函數(shù)的最值
專題:計算題,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:由條件利用正切函數(shù)的定義域和值域求得tanx=t的范圍,再利用二次函數(shù)的性質(zhì)即可求得y=-t2+10t-1的最值及對應(yīng)的x的值.
解答: 解:令tanx=t,由于x∈[
π
4
,
π
3
],
即有t∈[1,
3
],y=-t2+10t-1=-(t-5)2+24,
[1,
3
]在對稱軸t=5的左邊,即為增區(qū)間.
故當t=1即x=
π
4
時,函數(shù)y取得最小值為8,
當t=
3
即x=
π
3
時,函數(shù)y取得最大值為10
3
-4.
點評:本題主要考查正切函數(shù)的定義域和值域,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2n+1,求通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:2x3-x2-13x-6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2+24+27+…+23n+1=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:動點P、Q都在曲線C:
x=2cost
y=2sint
(t為參數(shù))上,對應(yīng)參數(shù)分別為t=a與t=2a(0<α<2π),M為PQ的中點.
(Ⅰ)求M的軌跡的參數(shù)方程;
(Ⅱ)將M到坐標原點的距離d表示為α的函數(shù),并判斷M的軌跡是否過坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1-ansin2θ=sin2θ•cos2nθ.
(Ⅰ)當θ=
π
4
時,求數(shù)列{an}的通項公式;
(Ⅱ)在(Ⅰ)的條件下,若數(shù)列{bn}滿足bn=sin
πan
2
,Sn為數(shù)列{bn}的前n項和,求證:對任意n∈N*,Sn<3+
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知不等式
x≥0
x+3y≥3
3x+2y≤6
所表示的平面區(qū)域被直線y=kx+2分成面積比是1:3的兩部分,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
3
-y2=1的左,右焦點分別為F1,F(xiàn)2,點P在雙曲線上,且滿足|PF1|+|PF2|=2
5
,則△PF1F2的面積為( 。
A、
5
B、
3
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,O是平面上一定點,A、B、C是平面上不共線的三個點,動點P滿足
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
)
,λ∈(0,+∞),則點P的軌跡一定通過△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

同步練習冊答案