(14分)設(shè)圓滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程。
解法一 設(shè)圓的圓心為P(a,b),半徑為r,則點(diǎn)P到x軸,y軸的距離分別為|b|,|a|。由題設(shè)知圓P截x軸所得劣弧所對(duì)的圓心角為90°,∴圓P截x軸所得的弦長(zhǎng)為r,故r2=2b2。又圓P截y軸所得的的弦長(zhǎng)為2,所以有r2=a2+1。從而得2b2-a2=1。又點(diǎn)P(a,b)到直線x-2y=0的距離為d=,所以5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2 -2(a2+b2)=2b2-a2=1,當(dāng)且僅當(dāng)a=b時(shí),上式等號(hào)成立,從而要使d取得最小值,則應(yīng)有,解此方程組得或。又由r2=2b2知r=。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。
解法二 同解法一得d=,∴a-2b=±d,得a2=4b2±bd+5d2 ①
將a2=2b2-1代入①式,整理得2b2±4bd+5d2+1=0 ② 把它看作b的二次方程,由于方程有實(shí)根,故判別式非負(fù),即△=8(5d2-1)≥0,得5d2≥1。所以5d2有最小值1,從而d有最小值。將其代入②式得2b2±4b+2=0,解得b=±1。將b=±1代入r2=2b2得r2=2,由r2=a2+1得a=±1。綜上a=±1,b=±1,r2=2。由|a-2b|=1知a,b同號(hào)。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為。如圖所示,過(guò)點(diǎn)F(0,b + 2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G。已知拋物線在點(diǎn)G的切線經(jīng)過(guò)橢圓的右焦點(diǎn)F1。
(1)求滿足條件的橢圓方程和拋物線方程;
(2)點(diǎn)G、所在的直線截橢圓的右下區(qū)域?yàn)镈,
若圓C:與區(qū)域D有公共點(diǎn),求m的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)
設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.
(1)求橢圓的離心率;
(2)若過(guò)三點(diǎn)的圓恰好與直線相切,求橢圓的方程;
(3)在(2)的條件下,過(guò)右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn)使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年山東省高一下學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
設(shè)圓滿足條件:(1)截y軸所得的弦長(zhǎng)為2;(2)被x軸分成兩段弧,其弧長(zhǎng)的比為3︰1;(3)圓心到直線:的距離為.求這個(gè)圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年廣州市七區(qū)聯(lián)考高二數(shù)學(xué)(理)下學(xué)期期末監(jiān)測(cè) 題型:解答題
(本小題滿分14分)
設(shè)動(dòng)圓過(guò)點(diǎn),且與定圓內(nèi)切,動(dòng)圓圓心的軌跡記為曲線,點(diǎn)的坐標(biāo)為.
(1)求曲線的方程;
(2)若點(diǎn)為曲線上任意一點(diǎn),求點(diǎn)和點(diǎn)的距離的最大值;
(3)當(dāng)時(shí),在(2)的條件下,設(shè)是坐標(biāo)原點(diǎn),是曲線上橫坐標(biāo)為的點(diǎn),記△的面積為,以為邊長(zhǎng)的正方形的面積為.若正數(shù)滿足,問(wèn)是否存在最小值?若存在,求出此最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)圓滿足條件:(1)截y軸所得的弦長(zhǎng)為2;(2)被x軸分成兩段弧,其弧長(zhǎng)的比為3︰1;(3)圓心到直線:的距離為.求這個(gè)圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com